A Numerical Investigation into the Effect of Homogeneity on the Time-Dependent Behavior of Brittle Rock
Abstract
:1. Introduction
2. Model Descriptions and Setup
2.1. Brief Description of RFPA 2D (Creep)
2.2. Specimen model setup
3. Numerical Results
4. Discussions
4.1. Evolution Laws of Stress Level vs. Strain Rate
4.2. Characteristics of Dilatancy
4.3. Failure Pattern
5. Concluding Remarks
- During uniaxial creep loading, the deformation is more significant for more homogeneous rock material. Diffusion creep may occur at low stress levels and transition to dislocation creep with increasing applied loads. The increasing law for creep strain with the homogeneity index under an unaltered triaxial condition is similar to the uniaxial case and the dislocation creep may be more inclined to emerge with increasing confining pressure for rock with the same homogeneity.
- The dilatancy index reaches the maximum at a certain high load level when creep failure happens, and the evolution of dilatancy index with homogeneity index under the same confining pressure is similar to the uniaxial case and is more prominent than that under the unconfined condition.
- Both the uniaxial and triaxial creep failure are based on the ductile damage accumulation inside rock. The dominant shear-type failure is shown by the uniaxial creep loading manner and the conventional compression case presents the splitting-based failure form. Under the confining pressure, the creep failure mode tends more towards the shear, which is more obvious with a higher homogeneity of rock.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, S.P. The influence of rock properties on the occurrence and control of rockbursts. Min. Sci. Technol. 1987, 5, 11–18. [Google Scholar] [CrossRef]
- Linkov, A.M. Rockbursts and the instability of rock masses. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1996, 33, 727–732. [Google Scholar] [CrossRef]
- He, M.C.; Miao, J.L.; Feng, J.L. Rock burst process of limestone and its acoustic emission characteristics under true-triaxial unloading conditions. Int. J. Rock Mech. Min. Sci. 2010, 47, 286–298. [Google Scholar] [CrossRef]
- Chen, B.R.; Feng, X.T.; Ming, H.J.; Zhou, H.; Zeng, X.H.; Feng, G.L.; Xiao, Y.X. Evolution Law and Mechanism of Rockburst In Deep Tunnel: Time Delayed Rockburst. Chin. J. Rock Mech. Eng. 2012, 31, 561–569. (In Chinese) [Google Scholar]
- Zhao, X.J.; Chen, B.R.; Zhao, H.B.; Jie, B.H.; Ning, Z.F. Laboratory creep tests for time-dependent properties of a marble in Jinping II hydropower station. J. Rock Mech. Geotech. Eng. 2012, 4, 168–176. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.S.; Zhou, H.; Zhang, C.Q.; Zhang, K.; Yan, F. Experimental investigation on time-lag failure properties of marble under uniaxial compressive test. Chin. J. Rock Soil Mech. 2011, 32, 2714–2720. (In Chinese) [Google Scholar] [CrossRef]
- Li, X.Z. Micromechanics-Based Study on the Progressive and Creep Failure Properties of Brittle Rocks. Ph.D. Thesis, Xi’an University of Architecture and Technology, Xi’an, Shaanxi, China, 2016. (In Chinese). [Google Scholar]
- Amitrano, D.; Helmstetter, A. Brittle creep, damage and time to failure in rocks. J. Geophs. Res-Sol. Ea. 2006, 111, B11201. [Google Scholar] [CrossRef] [Green Version]
- Paraskevopoulou, C.; Matthew, P.; Mark, D.; Simon, L.; Tom, L.; Mark, J. Time-dependent behaviour of brittle rocks based on static load laboratory tests. Geotech. Geol. Eng. 2018, 36, 337–376. [Google Scholar] [CrossRef]
- Fujii, Y.; Kiyama, T.; Ishijima, Y.; Kodama, J. Circumferential strain behavior during creep tests of brittle rocks. Int. J. Rock Mech. Min. Sci. 1999, 36, 323–337. [Google Scholar] [CrossRef]
- Lin, Q.X.; Liu, Y.M.; Tham, L.G.; Tang, C.A.; Lee, P.K.K.; Wang, J. Time-dependent strength degradation of granite. Int. J. Rock Mech. Min. Sci. 2009, 46, 1103–1114. [Google Scholar] [CrossRef]
- Nicolas, A.; Fortin, J.; Regnet, J.B.; Verberne, B.A.; Plümper, O.; Dimanov, A.; Spiers, C.J.; Guéguen, Y. Brittle and semibrittle creep of tavel limestone deformed at room temperature. J. Geophys. Res. 2017, 112, 4436–4459. [Google Scholar] [CrossRef]
- Zhao, T.B.; Zhang, Y.B.; Zhang, Q.Q.; Tan, Y.L. Analysis on the creep response of bolted rock using bolted burgers model. Geomech. Eng. 2018, 14, 141–149. [Google Scholar] [CrossRef]
- Liu, J.P.; Xu, S.D.; Li, Y.H. Analysis of rock mass stability according to power–law attenuation characteristics of acoustic emission and microseismic activities. Tunn. Undergr. Sp. Tech. 2019, 83, 303–312. [Google Scholar] [CrossRef]
- Ashby, M.F.; Sammis, C.G. The damage mechanics of brittle solids in compression. Pure Appl. Geophys. 1990, 133, 489–521. [Google Scholar] [CrossRef]
- Brantut, N.; Baud, P.; Heap, M.J.; Meredith, P.G. Micromechanics of brittle creep in rocks. J. Geophys. Res. 2012, 117, B08412. [Google Scholar] [CrossRef] [Green Version]
- Li, X.Z.; Qu, X.L.; Qi, C.Z.; Shao, Z.S. A unified analytical method calculating brittle rocks deformation induced by crack growth. Int. J. Rock Mech. Min. Sci. 2019, 113, 134–141. [Google Scholar] [CrossRef]
- Shi, G.C.; Yang, X.J.; Yu, H.C.; Zhu, C. Acoustic emission characteristics of creep fracture evolution in double-fracture fine sandstone under uniaxial compression. Eng. Fract. Mech. 2018, 210, 13–28. [Google Scholar] [CrossRef]
- Tang, Y. Time-Dependent Behavior of Rocks under Triaxial Compression Condition; Chongqing University: Chongqing, China, 2018. (In Chinese) [Google Scholar]
- Saez, A.; Dominguez, J. Dynamic crack problems in three-dimensional transversely isotropic solids. Eng. Anal. Bound. Elem. 2001, 25, 203–210. [Google Scholar] [CrossRef]
- Chen, S.; Yue, Z.Q.; Tham, L.G. Digital image based approach for three-dimensional mechanical analysis of heterogeneous rocks. Rock Mech. Rock. Eng. 2007, 40, 145–168. [Google Scholar] [CrossRef]
- Dai, Q. Two- and three-dimensional micromechanical viscoelastic finite element modeling of stone-based materials with X-ray computed tomography images. Constr. Build. Mater. 2011, 25, 1102–1114. [Google Scholar] [CrossRef]
- Zhuang, X.Y.; Zhu, H.H.; Augarde, C. An improved meshless Shepard and least squares method possessing the delta property and requiring no singular weight function. Comput. Mech. 2014, 53, 343–357. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Li, Y.; Fantuzzi, N.; Zhao, Y.; Liu, Y.B.; Peng, B.; Chen, J. Investigation of the Flow Properties of CBM Based on Stochastic Fracture Network Modeling. Materials 2019, 12, 2387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Li, Y.; Cao, S.G.; Fantuzzi, N.; Pan, R.K.; Tian, M.Y.; Liu, Y.B.; Yang, H.Y. Fracture toughness analysis of HCCD specimens of Longmaxi shale subjected to mixed mode I-II loading. Eng. Fract. Mech. 2020, 239, 107299. [Google Scholar] [CrossRef]
- Lockner, D.A.; Madden, T.R. A multiple-crack model of brittle fracture: 2. Time-dependent simulations. J. Geophys. Res. 1991, 96, 19643–19654. [Google Scholar] [CrossRef]
- Amitrano, D.; Grasso, J.R.; Hantz, D. From diffuse to localized damage through elastic interaction. Geophys. Res. Lett. 1999, 26, 2109–2112. [Google Scholar] [CrossRef]
- Tang, C.A.; Liu, H.; Lee, P.K.K.; Tsuiet, Y.; Tham, L.G. Numerical studies of the influence of microstructure on rock failure in uniaxial compression-Part I: Effect of heterogeneity. Int. J. Rock Mech. Min. Sci. 2000, 37, 555–569. [Google Scholar] [CrossRef]
- Tang, C.A.; Tham, L.G.; Lee, P.K.K.; Yang, T.H.; Li, L.C. Coupled analysis of flow, stress and damage (FSD) in rock failure. Int. J. Rock Mech. Min. Sci. 2002, 39, 477–489. [Google Scholar] [CrossRef]
- Wang, S.Y.; Sloan, S.W.; Huang, M.L.; Tang, C.A. Numerical study of failure mechanism of serial and parallel rock pillars. Rock Mech. Rock Eng. 2011, 44, 179–198. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Zhou, R.Q.; Zheng, B.; Zhang, B.; Wu, Y.F. Numerical evaluation of the effect of fracture network connectivity in naturally fractured shale based on FSD model. Sci. Chin. Earth Sci. 2015, 59, 626–639. [Google Scholar] [CrossRef]
- Li, L.C.; Xu, T.; Tang, C.A.; Zhu, L.K. Numerical simulation of creep induced progressive failure process of rock under uniaxial compression. Chin. J. Rock Soil Mech. 2008, 27, 2034–2042. (In Chinese) [Google Scholar] [CrossRef]
- Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951, 18, 293–297. [Google Scholar] [CrossRef]
- Xu, H.F. Time dependent behaviors of strength and elasticity modulus of weak rock. Chin. J. Rock Mech. Eng. 1997, 16, 246–251. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Zhang, C.S.; Chu, W.J. Experimental research on time-dependent behavior of crack propagation in Jinping deep marble. Chin. J. Rock Soil Mech. 2012, 27, 2034–2042. (In Chinese) [Google Scholar]
- Horii, H.; Nemat-Nasser, S. Compression-induced microcrack growth in brittle solids-axial splitting and shear failure. J. Geophs. Res.-Sol. Ea. 1985, 90, 3105–3125. [Google Scholar] [CrossRef]
- Ma, L. Experimental Investigation of Time Dependent Behavior of Welded Tonopah Spring Tuff; ProQuest Information and Learning Company: Ann Arbor, MI, USA, 2004. [Google Scholar]
Homogeneity Index (m) | 1.5, 2, 2.5, 3, 5 (Uniaxial) |
---|---|
2, 5 (Triaxial) | |
Mean compressive strength (σ0/MPa) | 500 |
Mean elastic modulus (E0/MPa) | 65,000 |
Poisson’s ratio (μ) | 0.28 |
Friction angle (ψ/°) | 30 |
Ratio of compression and tension strength (σc/σt) | 10 |
Coefficient of residual strength | 0.1 |
Attenuation coefficient of strength | 0.1 |
Attenuation coefficient of elastic modulus | 0.1 |
Ratio of long-term strength and short-term strength (σ∞/σc) | 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.-Z.; Shao, Z.-S.; Jin, D.-D.; Zhang, Z.; Zhou, D.-B. A Numerical Investigation into the Effect of Homogeneity on the Time-Dependent Behavior of Brittle Rock. Materials 2021, 14, 6818. https://doi.org/10.3390/ma14226818
Chen H-Z, Shao Z-S, Jin D-D, Zhang Z, Zhou D-B. A Numerical Investigation into the Effect of Homogeneity on the Time-Dependent Behavior of Brittle Rock. Materials. 2021; 14(22):6818. https://doi.org/10.3390/ma14226818
Chicago/Turabian StyleChen, Hao-Zhe, Zhu-Shan Shao, Dong-Dong Jin, Zhe Zhang, and Dong-Bo Zhou. 2021. "A Numerical Investigation into the Effect of Homogeneity on the Time-Dependent Behavior of Brittle Rock" Materials 14, no. 22: 6818. https://doi.org/10.3390/ma14226818
APA StyleChen, H. -Z., Shao, Z. -S., Jin, D. -D., Zhang, Z., & Zhou, D. -B. (2021). A Numerical Investigation into the Effect of Homogeneity on the Time-Dependent Behavior of Brittle Rock. Materials, 14(22), 6818. https://doi.org/10.3390/ma14226818