Effect of Sandblasting on Static and Fatigue Strength of Flash Butt Welded 75Cr4 Bandsaw Blades
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Flash Butt Welded Specimens
- laser power P = 1700 kW,
- frequency f = 500 Hz,
- cutting speed v = 2700 mm/s,
- gas pressure 0.4 bar.
2.3. Fatigue Strength Testing
2.4. Sandblasting Procedure
2.5. Fractographic Analysis
3. Results and Discussion
3.1. Static Strength
3.2. Fatigue Strength
3.3. Morphology of Fractured Samples upon Quasi-Static Fatigue Loading
3.4. Morphology of Fractured Samples upon Low-Cycle Fatigue Loading
3.5. Morphology of Fractured Samples upon High-Cycle Fatigue Loading
4. Conclusions
- Static strength tests showed no significant effect of sandblasting of the flash butt weld surface on the load capacity of the joint.
- The sandblasted samples were characterized by a greater repeatability of the static load capacity determined by the value of the standard deviation.
- In the case of both analyzed sample variants (sandblasted and non-sandblasted), the number of cycles at which the sample is damaged decreases with the percentage increase of the stress amplitude.
- Depending on the stress amplitude value, sandblasting of the weld surface increased the average value of destructive cycles by about 10–86% (depending on the stress amplitude) compared to samples not subjected to sandblasting.
- Regardless of the variable amplitude level, sandblasting has a positive effect on reducing the distribution of the test results, with the samples subjected to fatigue failure in a more reproducible manner.
- The surfaces of the fatigue fractures formed in low-cycle fatigue conditions are characterized by the ductile fracture mode with an uneven grain structure along the entire width of the fatigue fracture.
- The fatigue fractures of non-sandblasted samples tested under high-cycle fatigue conditions can be divided into those in an area adjacent to the flash butt weld edge and those in a middle zone with a mixed fracture mode. In the central part of the weld, the crack propagates according to the void growth and merging mechanism, and at the near-edge layer of the weld the crack develops according to the shear mechanism.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chvertko, Y.; Shevchenko, M.; Pirumov, A. Monitoring of the process of Flash-Butt Welding. Soldag. Insp. 2013, 18, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.C.; So, W.J.; Kang, M.J. Effect of flash butt welding parameters on weld quality of mooring chain. Arch. Mater. Sci. Eng. 2009, 38, 112–117. [Google Scholar]
- Balaev, E.Y.; Litvinov, A.E. Analysis of modern technologies for improving performance characteristics of cutting band saws. Adv. Eng. Res. 2018, 158, 259–263. [Google Scholar]
- Baracaldo, R.R.; Santos, M.C.; Echeverria, M.A.A. Effect of flash butt welding parameters on mechanical properties of wheel rims. Sci. Tech. 2018, 23, 51–57. [Google Scholar]
- Borz, S.A.; Oghnoum, M.; Marcu, M.V.; Lorincz, A.; Proto, A.R. Performance of Small-Scale Sawmilling Operations: A Case Study on Time Consumption, Productivity and Main Ergonomics for a Manually Driven Bandsaw. Forests 2021, 12, 810. [Google Scholar] [CrossRef]
- Ahsan, A.; Kenney, K.; Kröger, J.; Böhm, S. Hydrostatic Bandsaw Blade Guides for Natural Stone-Cutting Applications. J. Manuf. Mater. Process. 2020, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.H.; Huang, M.S.; Jhou, C.E.; Wei, C.C. Study on the Cutting Efficiency of High-Speed Band Saw Blade by Taylor Tool Life and Fractal Equations. Matec Web Conf. 2018, 201, 01001. [Google Scholar] [CrossRef]
- Wardoyo, T.T.B.; Izman, S.; Kurniawan, D. Effect of Butt Joint on Mechanical Properties of Welded Low Carbon Steel. Adv. Mater. Res. 2013, 845, 775–778. [Google Scholar] [CrossRef]
- Bodea, M.; Sechel, N.; Popa, F. Investigation of the flash butt welding of 51CrV4 steels for saw blades. Adv. Mater. Res. 2015, 1111, 79–84. [Google Scholar] [CrossRef]
- Orlowski, K.A.; Dobrzynski, M.; Gajowiec, G.; Lackowski, M.; Ochrymiuk, T. A Critical Reanalysis of Uncontrollable Washboarding Phenomenon in Metal Band Sawing. Materials 2020, 13, 4472. [Google Scholar] [CrossRef]
- Ni, J.; Lang, J.; Wu, C. Effect of surface texture on the transverse vibration for sawing. Int. J. Adv. Manuf. Technol. 2017, 92, 4543–4551. [Google Scholar] [CrossRef]
- Kalincová, D. Analysis of welded joint of band-saw blade—Influence of annealing process on joint microstructure and mechanical properties. Manuf. Technol. 2012, 12, 125–131. [Google Scholar] [CrossRef]
- Gochev, Z. Tempering of band saw blades after electric arc welding with smelt electrode. In Proceedings of the Trieskové a Beztrieskové Obrábanie Dreva Conference, Zvolen, Slovakia, 12–14 October 2006; pp. 143–150. [Google Scholar]
- Ichiyama, Y.; Kodama, S. Flash-butt welding of high strength steels. Nippon. Steel Tech. Rep. 2007, 95, 81–87. [Google Scholar]
- Krishnaraj, N.; Rao, K.P.; Ramachandran, E.G. The Quality of Flash Welded Joints in Mild Steel: A Study on the Effects of Welding Parameters. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1050.2245&rep=rep1&type=pdf (accessed on 4 September 2021).
- Marinin, E.; Sergeev, D.; Marinina, N. The capability of pulsed laser radiation for cutting band saws hardening. Matec Web Conf. 2017, 129, 01013. [Google Scholar] [CrossRef] [Green Version]
- Gochev, Z. Wood Cutting and Cutting Tools; PH Avangard Prima: Sofia, Bulgaria, 2018. [Google Scholar]
- Mulin, Y.I.; Kazannikov, O.V.; Vlasenko, V.D. Hardening of Band Saws with Electrospark Processing; Bulletin of the Pacific National University: Khabarovsk, Russia, 2011; pp. 91–98. [Google Scholar]
- Mitelea, I.; Ochian, D.D.; Burca, M.; Utu, I.D. TIG welding opportunities of bimetallic endless saw blades. In Proceedings of the Metal 2011 Conference, Brno, Czeh Republic, 18–20 May 2011; pp. 1–7. [Google Scholar]
- Bandsaw Blade Butt Welder. Available online: https://www.cruxweld.com/resistance-welding-equipments/butt-welder/bandsaw-blade-butt-welder/bandsaw-blade-butt-welding-machine/ (accessed on 2 November 2021).
- What Are the Advantages of Flash (Butt) Welding? Available online: https://www.twi-global.com/technical-knowledge/faqs/faq-what-are-the-advantages-of-flash-butt-welding (accessed on 2 November 2021).
- Rubin, M.B.; Tufekci, E. Contact stress on a rotating elastic band saw blade using the theory of a cosserat surface. J. Mech. Mater. Struct. 2006, 1, 1449–1478. [Google Scholar] [CrossRef] [Green Version]
- Marinov, B. Energy losses in big band saw machines—Analysis and optimization. Arch. Mech. Eng. 2020, 67, 335–351. [Google Scholar]
- Chai, H.; So, C.; Yuan, P.F. Manufacturing double-curved glulam with robotic band saw cutting technique. Automat. Constr. 2021, 124, 103571. [Google Scholar] [CrossRef]
- ISO 4957:2018-Tool Steels; International Organization for Standardization: Geneva, Switzerland, 2018.
- Kubit, A.; Drabczyk, M.; Trzepiecinski, T.; Bochnowski, W.; Kaščák, Ľ.; Slota, J. Fatigue Life Assessment of Refill Friction Stir Spot Welded Alclad 7075-T6 Aluminium Alloy Joints. Metals 2020, 10, 633. [Google Scholar] [CrossRef]
- Turnage, S.A.; Darling, K.A.; Rajagopalan, M.; Whittington, W.R.; Tschopp, M.A.; Peralta, P.; Solanki, K.N. Quantifying Structure-Property Relationships during Resistance Spot Welding of an Aluminum 6061-T6 Joint. Available online: https://arxiv.org/ftp/arxiv/papers/1605/1605.04251.pdf (accessed on 4 November 2021).
- Vijayan, V.; Huda, N.; Murugan, S.P.; Chanyoung, J.; Seung Man, N.; Namhyun, K.; Park, Y.D. The weldability study of carbon nanotube based 2nd generation primer coated steel for automotive applications. J. Mech. Sci. Technol. 2017, 31, 4405–4410. [Google Scholar] [CrossRef]
- Vijayan, V.; Murugan, S.P.; Son, S.G.; Park, Y.D. Shrinkage void formation in resistance spot welds: Its effect on advanced high-strength-steel weld strength and failure modes. J. Mater. Eng. Perform. 2019, 28, 7514–7526. [Google Scholar] [CrossRef]
- Pouranvari, M.; Marashi, S.P.H. Critical review of automotive steels spot welding: Process, structure and properties. Sci. Technol. Weld. Join. 2013, 18, 361–403. [Google Scholar] [CrossRef]
- Wan, X.; Wang, Y.; Fang, C. Welding defects occurrence and their effects on weld quality in resistance spot welding of AHSS steel. ISIJ Int. 2014, 54, 1883–1889. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.J.; Segurado, J.; Rodríguez de la Fuente, O.; Pabón, B.M.; Lorca, J. Molecular dynamics modeling and simulation of void growth in two dimensions. Model. Simul. Mater. Sci. 2013, 21, 075010. [Google Scholar] [CrossRef] [Green Version]
- Lubarda, V.A.; Schneider, M.S.; Kalantar, D.H.; Remington, B.A.; Meyers, M.A. Void growth by dislocation emission. Acta Mater. 2004, 52, 1397–1408. [Google Scholar] [CrossRef]
- Bandstra, J.P.; Koss, D.A.; Geltmacher, A.; Matic, P.; Everett, R.K. Modeling void coalescence during ductile fracture of a steel. Mater. Sci. Eng. A 2004, 366, 269–281. [Google Scholar] [CrossRef]
- Benzerga, A.A.; Leblond, J.B. Ductile Fracture by Void Growth to Coalescence. Adv. Appl. Mech. 2010, 44, 169–305. [Google Scholar]
- Neimitz, A.; Galkiewicz, J.; Lipiec, S.; Dzioba, I. Estimation of the Onset of Crack Growth in Ductile Materials. Materials 2018, 11, 2026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Besson, J. Continuum models of ductile fracture: A review. Int. J. Damage Mech. 2010, 19, 3–52. [Google Scholar] [CrossRef] [Green Version]
- Long, S.L.; Liang, Y.L.; Lu, Y.M.; Yang, M.; Yin, C.H. Study on the formation of micro-voids during ductile fracture. Mater. Res. Express 2018, 5, 016515. [Google Scholar] [CrossRef]
- Bang, H.; Bang, H.; Ro, C.; Jeong, S. Mechanical Behavior of the Weld Joints of Thick Steel Plates Produced by Various Welding Processes. Strength Mater. 2015, 47, 213–220. [Google Scholar] [CrossRef]
- Pradhan, P.K.; Dash, P.R.; Robi, P.S.; Roy, S.K. Micro void coalescence of ductile fracture in mild steel during tensile straining. Frat. Integrita Strutt. 2012, 19, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Fydrych, D.; Łabanowski, J.; Rogalski, G. Weldability of high strength steels in wet welding conditions. Pol. Maritme Res. 2013, 20, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, M.I.H.; Alshehri, H.; Orfi, J.; Ali, M.A.; Dobrotă, D. Computational Fluid Dynamics (CFD) Simulation of Inclusion Motion under Interfacial Tension in a Flash Welding Process. Metals 2021, 11, 1073. [Google Scholar] [CrossRef]
- Li, X.; Yang, W.; Xu, D.; Ju, K.; Chen, J. A new ductile fracture criterion considering both shear and tension mechanisms on void coalescence. Int. J. Damage Mech. 2021, 30, 374–398. [Google Scholar] [CrossRef]
- Klimpel, A. Welding and Metal Cutting; WNT: Warsaw, Poland, 1999. [Google Scholar]
- Tekoglu, C.; Hutchinson, J.W. On localization and void coalescence as a precursor to ductile fracture. Phil. Trans. R. Soc. Lond. 2015, 373, 20140121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
C | Si | Mn | P | S | Cr | Fe |
---|---|---|---|---|---|---|
0.70–0.80 | 0.25–0.50 | 0.60–0.80 | max. 0.03 | max. 0.03 | 0.30–0.40 | remainder |
Parameter | Non-Sandblasted Specimens | Sandblasted Speimens |
---|---|---|
LC of joint, kN | 25.5 | 20.247 |
25.047 | 27.056 | |
20.967 | 24.324 | |
24.148 | 19.513 | |
23.547 | 28.174 | |
Average value of LC, kN | 23.842 | 23.869 |
Standard deviation s, kN | 1.59 | 3.498 |
Coefficient of variation Ws, % | 6.669 | 14.655 |
Value ta for confidence level p = 95% | 3.182 | 3.182 |
ta × s | 5.059 | 11.131 |
Parameter | Values for Individual Specimens | ||||
---|---|---|---|---|---|
Stress Amplitude σ, MPa | 690 | 575 | 460 | 400 | 345 |
Number of destructive cycles N × 103 | 7.586 | 26.970 | 121.903 | 110.263 | 2000 |
14.570 | 67.508 | 67.031 | 473.251 | 2000 | |
3.483 | 80.451 | 100.492 | 363.04 | 2000 | |
18.246 | 19.635 | 198.564 | 732.53 | 2000 | |
Logarithmic number of destructive cycles logN | 3.880 | 4.431 | 5.086 | 5.042 | 6.301 |
4.163 | 4.829 | 4.826 | 5.675 | 6.301 | |
3.542 | 4.905 | 5.002 | 4.559 | 6.301 | |
4.261 | 4.293 | 5.298 | 4.865 | 6.301 | |
Average value of destructive cycles | 10,971 | 48,641 | 121,997 | 173,268 | - |
Standard deviation s | 0.27984 | 0.2588 | 0.1696 | 0.40755 | - |
Coefficient of variation Ws, % | 7.063 | 5.608 | 3.356 | 8.093 | - |
Value ta for confidence level p = 95% | 3.182 | 3.182 | 3.182 | 3.182 | - |
ta × s | 0.89 | 0.823 | 0.539 | 1.297 | - |
logNup | 4.852 | 5.438 | 5.592 | 6.332 | - |
Nup × 103 cycles | 71.139 | 274.294 | 391.516 | 256.204 | - |
logNlow | 3.071 | 3.791 | 4.513 | 3.738 | - |
Nlow × 103 cycles | 1.178 | 6.182 | 32.614 | 5.479 | - |
Fatigue strength Zg at 2 × 106 cycles | 345 |
Parameter | Values for Individual Specimens | ||||
---|---|---|---|---|---|
Stress Amplitude σ, MPa | 690 | 575 | 460 | 400 | 345 |
Number of destructive cycles N × 103 | 10.067 | 42.285 | 190.749 | 249.901 | 2000 |
18.723 | 50.760 | 98.032 | 494.720 | 2000 | |
12.104 | 85.458 | 307.645 | 351.386 | 2000 | |
8.547 | 36.574 | 294.482 | 198.640 | 2000 | |
Logarithmic number of destructive cycles logN | 4.003 | 4.626 | 5.280 | 5.397 | 6.301 |
4.272 | 4.705 | 4.991 | 5.694 | 6.301 | |
4.083 | 4.931 | 5.488 | 5.545 | 6.301 | |
3.932 | 4.563 | 5.469 | 5.298 | 6.301 | |
Average value of destructive cycles | 12,360 | 53,769 | 222,727 | 323,661 | - |
Standard deviation s | 0.12717 | 0.13940 | 0.19960 | 0.15006 | - |
Coefficient of variation Ws, % | 3.123 | 2.962 | 3.761 | 2.736 | - |
Value ta for confidence level p = 95% | 3.182 | 3.182 | 3.182 | 3.182 | - |
ta × s | 0.405 | 0.443 | 0.635 | 0.477 | - |
logNup | 4.477 | 5.150 | 5.942 | 5.961 | - |
Nup × 103 cycles | 30.004 | 141.331 | 875.749 | 915.155 | - |
logNlow | 3.667 | 4.263 | 4.672 | 5.006 | - |
Nlow × 103 cycles | 4.654 | 18.326 | 46.999 | 101.506 | - |
Fatigue strength Zg at 2 × 106 cycles | 345 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubit, A.; Lenart, Ł.; Trzepieciński, T.; Krzysiak, A.; Łabuński, W. Effect of Sandblasting on Static and Fatigue Strength of Flash Butt Welded 75Cr4 Bandsaw Blades. Materials 2021, 14, 6831. https://doi.org/10.3390/ma14226831
Kubit A, Lenart Ł, Trzepieciński T, Krzysiak A, Łabuński W. Effect of Sandblasting on Static and Fatigue Strength of Flash Butt Welded 75Cr4 Bandsaw Blades. Materials. 2021; 14(22):6831. https://doi.org/10.3390/ma14226831
Chicago/Turabian StyleKubit, Andrzej, Łukasz Lenart, Tomasz Trzepieciński, Andrzej Krzysiak, and Wojciech Łabuński. 2021. "Effect of Sandblasting on Static and Fatigue Strength of Flash Butt Welded 75Cr4 Bandsaw Blades" Materials 14, no. 22: 6831. https://doi.org/10.3390/ma14226831
APA StyleKubit, A., Lenart, Ł., Trzepieciński, T., Krzysiak, A., & Łabuński, W. (2021). Effect of Sandblasting on Static and Fatigue Strength of Flash Butt Welded 75Cr4 Bandsaw Blades. Materials, 14(22), 6831. https://doi.org/10.3390/ma14226831