Durability Investigation of Carbon Fiber Reinforced Concrete under Salt-Freeze Coupling Effect
Abstract
:1. Introduction
2. Experimental Programs
2.1. Materials
2.2. Specimen Preparation
2.3. Exposure Environment
2.4. PH and Mass Measurement
2.5. Microstructure Observation
2.6. Chloride Ion Concentration Test
2.7. Mechanical Test
3. Results and Discussion
3.1. PH Value Variation and Mass Loss
3.2. Micro Observation
3.2.1. Cross-Section Micro Observation
3.2.2. Surface Micro Observation
3.3. Chloride Penetration Analysis
3.3.1. Chloride Ion Concentration Time-Varying Model
3.3.2. Finite Element Analysis Model
3.4. Mechanical Performance Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, B.X.; Pan, J.J.; Fang, R.C.; Wang, Q. Damage model of concrete subjected to coupling chemical attacks and freeze-thaw cycles in saline soil area. Constr. Build. Mater. 2020, 242, 118205. [Google Scholar] [CrossRef]
- Xie, J.X.; Lu, Z.Y.; Guo, Y.C.; Huang, Y.H. Durability of CFRP sheets and epoxy resin exposed to natural hygrothermal or cyclic wet-dry environment. Polym. Compos. 2019, 40, 24687. [Google Scholar] [CrossRef]
- Uthaman, A.; Xian, G.J.; Thomas, S.; Wang, Y.J.; Zheng, Q.; Liu, X.L. Durability of an Epoxy Resin and Its Carbon Fiber- Reinforced Polymer Composite upon Immersion in Water. Acidic Alkaline Solut. 2020, 12, 614. [Google Scholar]
- Nasser, A.N.; Ghous, S.M.; Rami, H.; Abdalla, J.A.; Kais, D. Durability of Reinforced Concrete Beams Externally Strengthened with CFRP Laminates under Harsh Climatic Conditions. J. Compos. Constr. 2021, 25, 04021005. [Google Scholar]
- Choi, S.; Gartner, A.L.; Etten, N.V.; Hamilton, H.R.; Douglas, E.P. Durability of Concrete Beams Externally Reinforced with CFRP Composites Exposed to Various Environments. J. Compos. Constr. 2012, 16, 10–20. [Google Scholar] [CrossRef]
- Liu, S.; Pan, Y.F.; Li, H.D.; Xian, G.J. Durability of the Bond between CFRP and Concrete Exposed to Thermal Cycles. Materials 2019, 12, 515. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.Y.; Li, J.L.; Xie, J.H.; Huang, P.Y.; Xue, L.F. Durability of flexurally strengthened RC beams with prestressed CFRP sheet under wet–dry cycling in a chloride-containing environment. Compos. Struct. 2021, 255, 112869. [Google Scholar] [CrossRef]
- Kim, Y.J.; Ibraheem, A. Debonding Mitigation of Carbon Fiber-Reinforced Polymer- Strengthened Reinforced Concrete Beams with Grooved Bonding. ACI Struct. J. 2020, 117, 59–70. [Google Scholar] [CrossRef]
- Lai, J.; Cai, J.; Chen, Q.J.; He, A.; Wei, W.Y. Influence of Crack Width on Chloride Penetration in Concrete Subjected to Alternating Wetting-Drying Cycles. Materials 2020, 13, 3801. [Google Scholar] [CrossRef]
- Du, F.Y.; Jin, Z.Q.; Xiong, C.S.; Yu, Y.; Fan, J.F. Effects of Transverse Crack on Chloride Ions Diffusion and Steel Bars Corrosion Behavior in Concrete under Electric Acceleration. Materials 2019, 12, 2481. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.L.; Lin, P.Z.; Ma, J.J. Diffusion Behavior of Chloride Ions in Concrete Box Girder under the Influence of Load and Carbonation. Materials 2020, 13, 2117. [Google Scholar] [CrossRef]
- Cheng, X.K.; Peng, J.X.; Cai, C.S.; Zhang, J.R. Experimental Study on Chloride Ion Diffusion in Concrete under Uniaxial and Biaxial Sustained Stress. Materials 2020, 13, 5717. [Google Scholar] [CrossRef]
- Chen, R.G.; Wei, X.L.; Liu, F.W.; Anh, V.V. Multi-term time fractional diffusion equations and novel parameter estimation techniques for chloride ions sub-diffusion in reinforced concrete. Philosophical transactions. Ser. A Math. Phys. Eng. Sci. 2020, 378, 2172. [Google Scholar]
- Sousa, J.M.; Correia, J.R.; Cabral-Fonseca, S. Durability of an epoxy adhesive used in civil structural applications. Constr. Build. Mater. 2018, 161, 618–633. [Google Scholar] [CrossRef]
- Frances, A.; Granata, L.G.; Guadagno, L.; Naddeo, C. Hygrothermal durability of epoxy adhesives used in civil structural applications. Compos. Struct. 2021, 265, 113591. [Google Scholar]
- Rudawska, A. The Effect of the Salt Water Aging on the Mechanical Properties of Epoxy Adhesives Compounds. Polymers 2020, 12, 843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudawska, A.; Valentina, B. The Effect of Ageing in Water Solution Containing Iron Sulfate on the Mechanical Properties of Epoxy Adhesives. Polymers 2020, 12, 218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricardo, C.; Luís, C.; Aloys, D.; Susana, C.F.; José, S.C. Durability of Epoxy Adhesives and Carbon Fibre Reinforced Polymer Laminates Used in Strengthening Systems: Accelerated Ageing versus Natural Ageing. Materials 2020, 14, 1533. [Google Scholar]
- Hong, B.; Xian, G.J.; Li, H. Comparative Study of the Durability Behaviors of Epoxy- and Polyurethane-Based CFRP Plates Subjected to the Combined Effects of Sustained Bending and Water/Seawater Immersion. Polymers 2017, 9, 603. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.M.; Ji, Y.C. Axial Load-Bearing Concrete Confined with Carbon Fiber- Reinforced Polymer Sheets in Acidic Environment. Struct. J. 2017, 114, 775–786. [Google Scholar]
- Sun, L.F.; Jiang, K.N.; Zhu, X.J.; Xu, L.J. An alternating experimental study on the combined effect of freeze-thaw and chloride penetration in concrete. Constr. Build. Mater. 2020, 252, 119073. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Liu, Z.; Fu, K.; Li, Q.M.; Wang, Y.C. Experimental studies on the chloride ion permeability of concrete considering the effect of freeze–thaw damage. Constr. Build. Mater. 2020, 236, 117556. [Google Scholar] [CrossRef]
- Zhang, P.; Cong, Y.; Vogel, M.; Liu, Z.L.; Müller, H.S.; Zhu, Y.G.; Zhao, T.J. Steel reinforcement corrosion in concrete under combined actions: The role of freeze-thaw cycles, chloride ingress, and surface impregnation. Constr. Build. Mater. 2017, 148, 113–121. [Google Scholar] [CrossRef]
- Moosa, M.; Morteza, M.; Pardis, P.; Azim, S. Studying the effects of CFRP and GFRP sheets on the strengthening of self-compacting RC girders. Struct. Monit. Maint. 2019, 6, 47–66. [Google Scholar]
- Amaireh, L.K.; Al-Tamimi, A. Optimum Configuration of CFRP Composites for Strengthening of Reinforced Concrete Beams Considering the Contact Constraint. Procedia Manuf. 2020, 44, 350–357. [Google Scholar] [CrossRef]
- Khan, U.; Mohammed, A.A.; Ibrahim, A. Modeling shear behavior of reinforced concrete beams strengthened with externally bonded CFRP sheets. Struct. Eng. Mech. 2017, 61, 125–142. [Google Scholar] [CrossRef]
- Kadhim, M.M.; Jawdhari, A.R.; Altaee, M.J.; Adheem, A.H. Finite element modelling and parametric analysis of FRP strengthened RC beams under impact load. J. Build. Eng. 2020, 32, 101526. [Google Scholar] [CrossRef]
- Sakr, M.A.; El-khoriby, S.R.; Khalifa, T.M.; Nagib, M.T. Modeling of RC shear walls strengthened with ultra-high performance fiber reinforced concrete (UHPFRC) jackets. Eng. Struct. 2019, 200, 109696. [Google Scholar] [CrossRef]
- Obaidat, Y.T. Evaluation for RC Column Confined Partially with Externally FRP Wrapping Sheet Using Nonlinear FE Analysis. Mater. Sci. Forum 2019, 4901, 129–133. [Google Scholar] [CrossRef]
- Zhang, L.L.; Jianxu, M.; Lin, Z. Durability test of reinforced concrete structures externally bonded with CFRP in marine environment. China Civ. Eng. J. 2010, 43, 15951. [Google Scholar]
- Qiu, W.L.; Teng, F.; Pan, S.S. Damage constitutive model of concrete under repeated load after seawater freeze-thaw cycles. Constr. Build. Mater. 2020, 236, 117560. [Google Scholar] [CrossRef]
- Yu, Q.Q.; Li, X.; Gu, X.L. Durability of concrete with CFRP wrapping. MATEC Web Conf. 2018, 199, 09009. [Google Scholar] [CrossRef]
- Mesbah, H.A.; Benzaid, R. Damage-based stress-strain model of RC cylinders wrapped with CFRP composites. Adv. Concr. Constr. 2017, 5, 539–561. [Google Scholar]
- Qiu, Y.; Zhou, C.; A., S. Analytical model of large-scale circular concrete columns confined by pre-stressed carbon fibre reinforced polymer composites under axial compression. Struct. Infrastruct. Eng. 2021, 17, 1062–1075. [Google Scholar] [CrossRef]
Material | Tensile Strength/MPa | Elastic Modulus/GPa | Elongation at Break/% |
---|---|---|---|
CFRP composite | 3520 | 267 | 1.78 |
Epoxy adhesive | 54.3 | 2.7 | 2.25 |
Specimen Type | Plain Specimen | Partially Reinforced Specimen | Fully Reinforced Specimen | |
---|---|---|---|---|
Exposure Environment | ||||
No deterioration | PSND | PRSND | FRSND | |
chlorine salt immersion for 200 h | PSCSI-200 | PRSCSI-200 | FRSCSI-200 | |
chlorine salt immersion for 400 h | PSCSI-400 | PRSCSI-400 | FRSCSI-400 | |
chlorine salt freeze–thaw for 50 cycles | PSCSFT-50 | PRSCSFT-50 | FRSCSFT-50 | |
chlorine salt freeze–thaw for 100 cycles | PSCSFT-100 | PRSCSFT-100 | FRSCSFT-100 |
Compressive Strength of Cube/MPa | Axial Tensile Strength/MPa | Elastic Modulus/MPa |
---|---|---|
35.36 | 29.14 | 35,847.5 |
Specimen Label | Compressive Strength Variation/% | Compressive Ultimate Strain Variation/% |
---|---|---|
PSND | — | — |
PSCSI-200 | −2.35 | −9.2 |
PSCSI-400 | −5.03 | −16.69 |
PSCSFT-50 | −19.39 | 12.3 |
PSCSFT-100 | −50.56 | 20.96 |
PRSND | — | — |
PRSCSI-200 | −2.19 | −5.63 |
PRSCSI-400 | −3.94 | −12.68 |
PRSCSFT-50 | −7.95 | 6.22 |
PRSCSFT-100 | −16.12 | 12.63 |
FRSND | — | — |
FRSCSI-200 | −1.17 | −1.43 |
FRSCSI-400 | −2.65 | −4.31 |
FRSCSFT-50 | −5.52 | 2.54 |
FRSCSFT-100 | −10.47 | 4.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Y.; Liu, W.; Jia, Y.; Li, W. Durability Investigation of Carbon Fiber Reinforced Concrete under Salt-Freeze Coupling Effect. Materials 2021, 14, 6856. https://doi.org/10.3390/ma14226856
Ji Y, Liu W, Jia Y, Li W. Durability Investigation of Carbon Fiber Reinforced Concrete under Salt-Freeze Coupling Effect. Materials. 2021; 14(22):6856. https://doi.org/10.3390/ma14226856
Chicago/Turabian StyleJi, Yongcheng, Wenchao Liu, Yanmin Jia, and Wei Li. 2021. "Durability Investigation of Carbon Fiber Reinforced Concrete under Salt-Freeze Coupling Effect" Materials 14, no. 22: 6856. https://doi.org/10.3390/ma14226856
APA StyleJi, Y., Liu, W., Jia, Y., & Li, W. (2021). Durability Investigation of Carbon Fiber Reinforced Concrete under Salt-Freeze Coupling Effect. Materials, 14(22), 6856. https://doi.org/10.3390/ma14226856