The ZnO-In2O3 Oxide System as a Material for Low-Temperature Deposition of Transparent Electrodes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Avrutin, V.; Izyumskaya, N.; Özgür, Ü.; Morkoç, H. Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattices Microstruct. 2010, 48, 458–484. [Google Scholar] [CrossRef]
- Lewis, B.G.; Paine, D.C. Applications and Processing of Transparent Conducting Oxides. MRS Bull. 2000, 25, 22–27. [Google Scholar] [CrossRef]
- Cao, W.; Li, J.; Chen, H.; Xue, J. Transparent electrodes for organic optoelectronic devices: A review. J. Photonics Energy 2014, 4, 040990. [Google Scholar] [CrossRef]
- Song, S.; Kim, Y.J.; Kang, H.-L.; Yoon, S.; Hong, D.-K.; Kim, W.-H.; Shin, I.-S.; Seong, W.K.; Lee, K.-N. Sensitivity Improvement in Electrochemical Immunoassays Using Antibody Immobilized Magnetic Nanoparticles with a Clean ITO Working Electrode. BioChip J. 2020, 14, 308–316. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, W.; Wu, W.; Liu, B. Research Progress on Flexible Oxide-Based Thin Film Transistors. Appl. Sci. 2019, 9, 773. [Google Scholar] [CrossRef] [Green Version]
- Demirhan, Y.; Koseoglu, H.; Turkoglu, F.; Uyanik, Z.; Ozdemir, M.; Aygun, G.; Ozyuzer, L. The controllable deposition of large area roll-to-roll sputtered ito thin films for photovoltaic applications. Renew. Energy 2020, 146, 1549–1559. [Google Scholar] [CrossRef]
- Nomoto, J.; Makino, H.; Tsuchiya, T.; Yamamoto, T. Chemical trends of n-type doping of Al, Ga, In, and Ti donors for ZnO polycrystalline films deposited by direct-current magnetron sputtering. J. Appl. Phys. 2020, 128, 145303. [Google Scholar] [CrossRef]
- Abduev, A.; Akmedov, A.; Asvarov, A.; Chiolerio, A. A Revised Growth Model for Transparent Conducting Ga Doped ZnO Films: Improving Crystallinity by Means of Buffer Layers. Plasma Process. Polym. 2015, 12, 725–733. [Google Scholar] [CrossRef]
- Minami, T. Substitution of transparent conducting oxide thin films for indium tin oxide transparent electrode applications. Thin Solid Films 2008, 516, 1314–1321. [Google Scholar] [CrossRef]
- Yamamoto, N.; Makino, H.; Osone, S.; Ujihara, A.; Ito, T.; Hokari, H.; Maruyama, T.; Yamamoto, T. Development of Ga-doped ZnO transparent electrodes for liquid crystal display panels. Thin Solid Films 2012, 520, 4131–4138. [Google Scholar] [CrossRef]
- Asvarov, A.; Abduev, A.; Akhmedov, A.; Abdullaev, A. Effects of a high humidity environment and air anneal treatments on the electrical resistivity of transparent conducting ZnO-based thin films. Phys. Status Solidi C 2010, 7, 1553–1555. [Google Scholar] [CrossRef]
- Sun, H.; Jen, Sh.-U.; Chen, Sh.-Ch.; Ye, Sh.-Sh.; Wang, X. The electrical stability of In-doped ZnO thin films deposited by RF sputtering. J. Phys. D Appl. Phys. 2017, 50, 045102. [Google Scholar] [CrossRef]
- Edinger, S.; Bansal, N.; Bauch, M.; Wibowo, R.A.; Újvári, G.; Hamid, R.; Trimmel, G.; Dimopoulos, T. Highly transparent and conductive indium-doped zinc oxide films deposited at low substrate temperature by spray pyrolysis from water-based solutions. J. Mater. Sci. 2017, 52, 8591–8602. [Google Scholar] [CrossRef] [Green Version]
- Gulkowski, S.; Krawczak, E. RF/DC Magnetron Sputtering Deposition of Thin Layers for Solar Cell Fabrication. Coatings 2020, 10, 791. [Google Scholar] [CrossRef]
- Asvarov, A.S.; Muslimov, A.E.; Akhmedov, A.K.; Abduev, A.K.; Kanevsky, V.M. A Laboratory Apparatus for Spark Plasma Sintering of Ceramic and Composite Materials. Instrum. Exp. Tech. 2019, 62, 726–730. [Google Scholar] [CrossRef]
- Akhmedov, A.K.; Abduev, A.K.; Asvarov, A.S.; Muslimov, A.E.; Kanevsky, V.M. ZnO-Based Nanocrystalline Films Obtained in a Single Vacuum Cycle. Nanotechnol. Russia 2020, 15, 741–746. [Google Scholar] [CrossRef]
- Sundaram, M.; Natarajan, S.; Dikundwar, A.G.; Bhutani, H. Quantification of solid-state impurity with powder X-ray diffraction using laboratory source. Powder Diffr. 2020, 35, 226–232. [Google Scholar] [CrossRef]
- Labegorre, J.-B.; Lebedev, O.I.; Bourges, C.; Rečnik, A.; Košir, M.; Bernik, S.; Maignan, A.; Le Mercier, T.; Pautrot-d’Alençon, L.; Guilmeau, E. Phonon Scattering and Electron Doping by 2D Structural Defects in In/ZnO. ACS Appl. Mater. Interfaces 2018, 10, 6415–6423. [Google Scholar] [CrossRef]
- Jantzena, T.; Hacka, K.; Yazhenskikh, E.; Müller, M. Thermodynamic assessment of oxide system In2O3-SnO2-ZnO. Chim. Techno Acta 2018, 5, 166. [Google Scholar] [CrossRef] [Green Version]
- Muktepavela, F.; Maniks, J.; Grigorjeva, L.; Zabels, R.; Rodnyi, P.; Gorokhova, E. Effect of in Doping on the ZnO Powders Morphology and Microstructure Evolution of ZnO:In Ceramics as a Material for Scintillators. Latv. J. Phys. Tech. Sci. 2018, 6, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Medvedovski, E.; Alvarez, N.A.; Szepesi, C.J.; Yankov, O.; Lippens, P. Advanced indium tin oxide ceramic sputtering targets (rotary and planar) for transparent conductive nanosized films. Adv. Appl. Ceram. 2013, 12, 243–256. [Google Scholar] [CrossRef]
- Heintze, M.; Luciu, I. Nodule formation on sputtering targets: Causes and their control by MF power supplies. Surf. Coat. Technol. 2018, 336, 80–83. [Google Scholar] [CrossRef]
- Winnicki, M.; Wiatrowski, A.; Mazur, M. High Power Impulse Magnetron Sputtering of In2O3/Sn Cold Sprayed Composite Target. Materials 2021, 14, 1228. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, B.; Behera, D.; Pradhan, S.K.; Mishra, D.K.; Sahoo, S.K.; Nayak, R.R.; Sekhar, K.P.C. Analysis of structural, optical and electrical properties of nano-particulate indium doped zinc oxide thin films. Mater. Res. Express 2019, 6, 1150a6. [Google Scholar] [CrossRef]
- Shinde, S.S.; Shinde, P.S.; Bhosale, C.H.; Rajpure, K.Y. Optoelectronic properties of sprayed transparent and conducting indium doped zinc oxide thin films. J. Phys. D Appl. Phys. 2008, 41, 105109. [Google Scholar] [CrossRef]
- Bharath, S.P.; Bangera, K.V.; Shivakumar, G.K. Enhanced gas sensing properties of indium doped ZnO thin films. Superlattices Microstruct. 2018, 124, 72–78. [Google Scholar] [CrossRef]
- Jain, A.; Sagar, P.; Mehra, R.M. Band gap widening and narrowing in moderately and heavily doped n-ZnO films. Solid State Electron. 2006, 50, 1420. [Google Scholar] [CrossRef]
- Burstein, E. Anomalous Optical Absorption Limit in InSb. Phys. Rev. 1954, 93, 632. [Google Scholar] [CrossRef]
- Sernelius, B.E.; Berggren, K.-F.; Jin, Z.-C.; Hamberg, I.; Granqvist, C.G. Band-gap tailoring of ZnO by means of heavy Al doping. Phys. Rev.B 1988, 37, 10244. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.G.; Fujita, S.; Kawaharamura, T.; Nishinaka, H.; Kamada, Y.; Ohshima, T.; Ye, Z.Z.; Zeng, Y.J.; Zhang, Y.Z.; Zhu, L.P.; et al. Carrier concentration dependence of band gap shift in n-typeZnO:Al films. J. Appl. Phys. 2007, 101, 083705. [Google Scholar] [CrossRef]
- Tang, G.; Liu, H.; Zhang, W. The Variation of Optical Band Gap for ZnO:In Films Prepared by Sol-Gel Technique. Adv. Mater. Sci. Eng. 2013, 2013, 348601. [Google Scholar] [CrossRef] [Green Version]
- Khalfallah, B.; Chaabouni, F.; Abaab, M. Some physical investigations on In-doped ZnO films prepared by RF magnetron sputtering using powder compacted target. J. Mater. Sci. Mater. Electron. 2015, 26, 5209–5216. [Google Scholar] [CrossRef]
- Torchynska, T.; El Filali, B.; Gomez, J.A.J.; Polupan, G.; García, J.L.R.; Shcherbyna, L. Raman scattering, emission, and deep defect evolution in ZnO:In thin films. J. Vac. Sci. Technol. A 2020, 38, 063409. [Google Scholar] [CrossRef]
- Potter, D.B.; Bhachu, D.S.; Powell, M.J.; Darr, J.A.; Parkin, I.P.; Carmalt, C.J. Al-, Ga-, and In-doped ZnO thin films via aerosol assisted CVD for use as transparent conducting oxides. Phys. Status Solidi A 2016, 213, 1346–1352. [Google Scholar] [CrossRef] [Green Version]
- Benzitouni, S.; Zaabat, M.; Mahdjoub, A.; Benaboud, A.; Boudine, B. High transparency and conductivity of heavily In-doped ZnO thin films deposited by dip-coating method. Materials Science-Poland 2018, 36, 427–434. [Google Scholar] [CrossRef] [Green Version]
- Txintxurreta, J.; G-Berasategui, E.; Ortiz, R.; Hernández, O.; Mendizábal, L.; Barriga, J. Indium Tin Oxide Thin Film Deposition by Magnetron Sputtering at Room Temperature for the Manufacturing of Efficient Transparent Heaters. Coatings 2021, 11, 92. [Google Scholar] [CrossRef]
- Álvarez-Fraga, L.; Jiménez-Villacorta, F.; Sánchez-Marcos, J.; de Andrés, A.; Prieto, C. Indium-tin oxide thin films deposited at room temperature on glass and PET substrates: Optical and electrical properties variation with the H2–Ar sputtering gas mixture. Appl. Surf. Sci. 2015, 344, 217–222. [Google Scholar] [CrossRef]
- Morales-Masis, M.; Dauzou, F.; Jeangros, Q.; Dabirian, A.; Lifka, H.; Gierth, R.; Ruske, M.; Moet, D.; Hessler-Wyser, A.; Ballif, C. An Indium-Free Anode for Large-Area Flexible OLEDs: Defect-Free Transparent Conductive Zinc Tin Oxide. Adv. Funct. Mater. 2016, 26, 384–392. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.-F.; Xiong, P.-P.; Chen, P.; Li, H.-Y.; Hou, J.-W.; Kang, B.-N.; Duan, Y. Aluminum-Doped Zinc Oxide Transparent Electrode Prepared by Atomic Layer Deposition for Organic Light Emitting Devices. IEEE Trans. Nanotechnol. 2017, 16, 634–638. [Google Scholar] [CrossRef]
- Haacke, G. New figure of merit for transparent conductors. J. Appl. Phys. 1976, 47, 4086–4089. [Google Scholar] [CrossRef]
- Akhmedov, A.K.; Asvarov, A.S.; Muslimov, A.E.; Kanevsky, V.M. A Multi-Position Drum-Type Assembly for Simultaneous Film Deposition at Different Temperatures in a Single Sputter Cycle–Application to ITO Thin Films. Coatings 2020, 10, 1076. [Google Scholar] [CrossRef]
Target | d, nm | In/Zn Ratio, % |
---|---|---|
99.5 mol% ZnO + 0.5 mol% In2O3 | 270 ± 5 | 1.1 |
98.5 mol% ZnO + 1.5 mol% In2O3 | 290 ± 5 | 2.9 |
97.5 mol% ZnO + 2.5 mol% In2O3 | 310 ± 5 | 4.6 |
95.0 mol% ZnO + 5.0 mol% In2O3 | 320 ± 5 | 9.2 |
90.0 mol% ZnO + 10.0 mol% In2O3 | 320 ± 5 | 26.1 |
Target | d, nm | RS, Ω/sq | σ, Ω−1.cm−1 | Tav, % | FOM, Ω−1 | ΔR/RS, % |
---|---|---|---|---|---|---|
99.5 mol% ZnO + 0.5 mol% In2O3 | 270 ± 5 | 960 | 38.6 ± 1.0 | 86.0 | 2.30 × 10−4 | +132% |
98.5 mol% ZnO + 1.5 mol% In2O3 | 290 ± 5 | 179 | 192.6 ± 3.5 | 87.0 | 1.38 × 10−3 | +55% |
97.5 mol% ZnO + 2.5 mol% In2O3 | 310 ± 5 | 89 | 362.5 ± 6.0 | 86.3 | 2.58 × 10−3 | +37% |
95.0 mol% ZnO + 5.0 mol% In2O3 | 320 ± 5 | 69 | 452.9 ± 7.0 | 84.1 | 2.57 × 10−3 | +1% |
90.0 mol% ZnO + 10.0 mol% In2O3 | 320 ± 5 | 78 | 400.6 ± 6.5 | 83.6 | 2.15 × 10−3 | −4% |
ITO [41] | 410 ± 5 | 50 | 487.8 ± 6.0 | 82.6 | 2.96 × 10−3 | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhmedov, A.; Abduev, A.; Murliev, E.; Asvarov, A.; Muslimov, A.; Kanevsky, V. The ZnO-In2O3 Oxide System as a Material for Low-Temperature Deposition of Transparent Electrodes. Materials 2021, 14, 6859. https://doi.org/10.3390/ma14226859
Akhmedov A, Abduev A, Murliev E, Asvarov A, Muslimov A, Kanevsky V. The ZnO-In2O3 Oxide System as a Material for Low-Temperature Deposition of Transparent Electrodes. Materials. 2021; 14(22):6859. https://doi.org/10.3390/ma14226859
Chicago/Turabian StyleAkhmedov, Akhmed, Aslan Abduev, Eldar Murliev, Abil Asvarov, Arsen Muslimov, and Vladimir Kanevsky. 2021. "The ZnO-In2O3 Oxide System as a Material for Low-Temperature Deposition of Transparent Electrodes" Materials 14, no. 22: 6859. https://doi.org/10.3390/ma14226859
APA StyleAkhmedov, A., Abduev, A., Murliev, E., Asvarov, A., Muslimov, A., & Kanevsky, V. (2021). The ZnO-In2O3 Oxide System as a Material for Low-Temperature Deposition of Transparent Electrodes. Materials, 14(22), 6859. https://doi.org/10.3390/ma14226859