Adsorption and Oxidation of CO on Ceria Nanoparticles Exposing Single-Atom Pd and Ag: A DFT Modelling
Abstract
:1. Introduction
2. Models and Details of Calculations
3. Results and Discussion
3.1. Structure, Charge State, and Relative Energies of Surface Complexes with COx
3.1.1. Adsorption Sites
3.1.2. Carbonyl Species
3.1.3. Carbon Dioxide Species
3.1.4. Carbonate Species
3.2. Reaction Energies
3.3. COx Vibrational Fingerprints
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grabchenko, M.V.; Mikheeva, N.N.; Mamontov, G.V.; Salaev, M.A.; Liotta, L.F.; Vodyankina, O.V. Ag/CeO2 Composites for Catalytic Abatement of CO, Soot and VOCs. Catalysts 2018, 8, 285. [Google Scholar] [CrossRef] [Green Version]
- Grabchenko, M.V.; Mamontov, G.V.; Zaikovskii, V.I.; La Parola, V.; Liotta, L.F.; Vodyankina, O.V. The Role of Metal–Support Interaction in Ag/CeO2 Catalysts for CO and Soot Oxidation. Appl. Catal. B Environ. 2020, 260, 118148. [Google Scholar] [CrossRef]
- Shimizu, K.; Kawachi, H.; Satsuma, A. Study of Active Sites and Mechanism for Soot Oxidation by Silver-Loaded Ceria Catalyst. Appl. Catal. B 2010, 96, 169–175. [Google Scholar] [CrossRef]
- Bera, P.; Patil, K.C.; Hegde, M.S. NO Reduction, CO and Hydrocarbon Oxidation over Combustion Synthesized Ag/CeO2 Catalyst. Phys. Chem. Chem. Phys. 2000, 2, 3715–3719. [Google Scholar] [CrossRef]
- Tan, H.; Wang, J.; Yu, S.; Zhou, K. Support Morphology-Dependent Catalytic Activity of Pd/CeO2 for Formaldehyde Oxidation. Environ. Sci. Technol. 2015, 49, 8675–8682. [Google Scholar] [CrossRef]
- Colussi, S.; Gayen, A.; Camellone, M.F.; Boaro, M.; Llorca, J.; Fabris, S.; Trovarelli, A. Nanofaceted Pd-O Sites in Pd-Ce Surface Superstructures: Enhanced Activity in Catalytic Combustion of Methane. Angew. Chem. Int. Ed. 2009, 48, 8481–8484. [Google Scholar] [CrossRef] [PubMed]
- Boronin, A.I.; Slavinskaya, E.M.; Danilova, I.G.; Gulyaev, R.V.; Amosov, Y.u.I.; Kuznetsov, P.A.; Polukhina, I.A.; Koscheev, S.V.; Zaikovskii, V.I.; Noskov, A.S. Investigation of Palladium Interaction with Cerium Oxide and Its State in Catalysts for Low-Temperature CO Oxidation. Catal. Today 2009, 144, 201–211. [Google Scholar] [CrossRef]
- Spezzati, G.; Su, Y.; Hofmann, J.P.; Benavidez, A.D.; DeLaRiva, A.T.; McCabe, J.; Datye, A.K.; Hensen, E.J.M. Atomically Dispersed Pd–O Species on CeO2(111) as Highly Active Sites for Low-Temperature CO Oxidation. ACS Catal. 2017, 7, 6887–6891. [Google Scholar] [CrossRef] [Green Version]
- Spezzati, G.; Benavidez, A.D.; DeLaRiva, A.T.; Su, Y.; Hofmann, J.P.; Asahina, S.; Olivier, E.J.; Neethling, J.H.; Miller, J.T.; Datye, A.K.; et al. CO Oxidation by Pd Supported on CeO2(100) and CeO2(111) Facets. Appl. Catal. B 2019, 243, 36–46. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H.; Hu, Z.; Yao, M.; Li, Y. A Review on the Pd-Based Three-Way Catalyst. Catal. Rev. 2015, 57, 79–144. [Google Scholar] [CrossRef]
- Carraro, F.; Fapohunda, A.; Paganini, M.C.; Agnoli, S. Morphology and Size Effect of Ceria Nanostructures on the Catalytic Performances of Pd/CeO2 Catalysts for Methanol Decomposition to Syngas. ACS Appl. Nano Mater. 2018, 1, 1492–1501. [Google Scholar] [CrossRef]
- Fan, L.; Fujimoto, K. Reaction Mechanism of Methanol Synthesis from Carbon Dioxide and Hydrogen on Ceria-Supported Palladium Catalysts with SMSI Effect. J. Catal. 1997, 172, 238–242. [Google Scholar] [CrossRef]
- Guo, C.; Wei, S.; Zhou, S.; Zhang, T.; Wang, Z.; Ng, S.-P.; Lu, X.; Wu, C.-M.L.; Guo, W. Initial Reduction of CO2 on Pd-, Ru-, and Cu-Doped CeO2(111) Surfaces: Effects of Surface Modification on Catalytic Activity and Selectivity. ACS Appl. Mater. Interfaces 2017, 9, 26107–26117. [Google Scholar] [CrossRef]
- Farmer, J.A.; Campbell, C.T. Ceria Maintains Smaller Metal Catalyst Particles by Strong Metal-Support Bonding. Science 2010, 329, 933–936. [Google Scholar] [CrossRef]
- Lykhach, Y.; Kozlov, S.M.; Skála, T.; Tovt, A.; Stetsovych, V.; Tsud, N.; Dvořák, F.; Johánek, V.; Neitzel, A.; Mysliveček, J.; et al. Counting Electrons on Supported Nanoparticles. Nat. Mater. 2016, 15, 284–288. [Google Scholar] [CrossRef]
- You, R.; Li, Z.; Cao, T.; Nan, B.; Si, R.; Huang, W. Synthesis in a Glovebox: Utilizing Surface Oxygen Vacancies To Enhance the Atomic Dispersion of Palladium on Ceria for Carbon Monoxide Oxidation and Propane Combustion. ACS Appl. Nano Mater. 2018, 1, 4988–4997. [Google Scholar] [CrossRef]
- Boronin, A.I.; Slavinskaya, E.M.; Figueroba, A.; Stadnichenko, A.I.; Kardash, T.Y.; Stonkus, O.A.; Fedorova, E.A.; Muravev, V.V.; Svetlichnyi, V.A.; Bruix, A.; et al. CO Oxidation Activity of Pt/CeO2 Catalysts Below 0 °C: Platinum Loading Effects. Appl. Catal. B Environ. 2021, 286, 119931. [Google Scholar] [CrossRef]
- Pentyala, P.; Deshpande, P.A. CO Oxidation over Ce1–xPdxO2−δ Takes Place via Vacancy Hopping. Ind. Eng. Chem. Res. 2019, 58, 7964–7972. [Google Scholar] [CrossRef]
- Wu, Z.; Li, M.; Overbury, S.H. On the Structure Dependence of CO Oxidation over CeO2 nanocrystals with well-defined surface planes. J. Catal. 2012, 285, 61–73. [Google Scholar] [CrossRef]
- Song, W.; Su, Y.; Hensen, E.J.M. A DFT Study of CO Oxidation at the Pd–CeO2(110) Interface. J. Phys. Chem. C 2015, 119, 27505–27511. [Google Scholar] [CrossRef]
- Groppi, G.; Cristiani, C.; Lietti, L.; Ramella, C.; Valentini, M.; Forzatti, P. Effect of Ceria on Palladium Supported Catalysts for High Temperature Combustion of CH4 under Lean Conditions. Catal. Today 1999, 50, 399–412. [Google Scholar] [CrossRef]
- Sharma, S.; Hilaire, S.; Vohs, J.M.; Gorte, R.J.; Jen, H.-W. Evidence for Oxidation of Ceria by CO2. J. Catal. 2000, 190, 199–204. [Google Scholar] [CrossRef]
- Scanlon, D.O.; Morgan, B.J.; Watson, G.W. The Origin of the Enhanced Oxygen Storage Capacity of Ce1−x(Pd/Pt)xO2. Phys. Chem. Chem. Phys. 2011, 13, 4279. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.; Li, M.; Hua, Q.; Zhang, L.; Ma, Y.; Ye, B.; Huang, W. Shape-Dependent Interplay between Oxygen Vacancies and Ag–CeO2 Interaction in Ag/CeO2 Catalysts and Their Influence on the Catalytic Activity. J. Catal. 2012, 293, 195–204. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, X.; Meng, D.; Guo, Y.; Guo, Y.; Lu, G. Effect of Ceria Crystal Plane on the Physicochemical and Catalytic Properties of Pd/Ceria for CO and Propane Oxidation. ACS Catal. 2016, 6, 2265–2279. [Google Scholar] [CrossRef]
- Meng, L.; Jia, A.-P.; Lu, J.-Q.; Luo, L.-F.; Huang, W.-X.; Luo, M.-F. Synergetic Effects of PdO Species on CO Oxidation over PdO–CeO2 Catalysts. J. Phys. Chem. C 2011, 115, 19789–19796. [Google Scholar] [CrossRef]
- Gulyaev, R.V.; Kardash, T.Y.; Malykhin, S.E.; Stonkus, O.A.; Ivanova, A.S.; Boronin, A.I. The Local Structure of PdxCe1−xO2−x−δ Solid Solutions. Phys. Chem. Chem. Phys. 2014, 16, 13523–13539. [Google Scholar] [CrossRef]
- Craciun, R.; Daniell, W.; Knözinger, H. The Effect of CeO2 Structure on the Activity of Supported Pd Catalysts Used for Methane Steam Reforming. Appl. Catal. A 2002, 230, 153–168. [Google Scholar] [CrossRef]
- Luches, P.; Pagliuca, F.; Valeri, S.; Illas, F.; Preda, G.; Pacchioni, G. Nature of Ag Islands and Nanoparticles on the CeO2(111) Surface. J. Phys. Chem. C 2012, 116, 1122–1132. [Google Scholar] [CrossRef]
- Liu, J.-X.; Su, Y.; Filot, I.A.W.; Hensen, E.J.M. A Linear Scaling Relation for CO Oxidation on CeO2-Supported Pd. J. Am. Chem. Soc. 2018, 140, 4580–4587. [Google Scholar] [CrossRef]
- Shen, M.; Wei, G.; Yang, H.; Wang, J.; Wang, X. Different Selections of Active Sites for CO, C3H6, and C10H22 Oxidation on Pd/CeO2 Catalysts. Fuel 2013, 103, 869–875. [Google Scholar] [CrossRef]
- Hiley, C.I.; Fisher, J.M.; Thompsett, D.; Kashtiban, R.J.; Sloan, J.; Walton, R.I. Incorporation of Square-Planar Pd2+ in Fluorite CeO2: Hydrothermal Preparation, Local Structure, Redox Properties and Stability. J. Mater. Chem. A 2015, 3, 13072–13079. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.-Q.; Filot, I.A.W.; Liu, J.-X.; Hensen, E.J.M. Stable Pd-Doped Ceria Structures for CH4 Activation and CO Oxidation. ACS Catal. 2018, 8, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Priolkar, K.R.; Bera, P.; Sarode, P.R.; Hegde, M.S.; Emura, S.; Kumashiro, R.; Lalla, N.P. Formation of Ce1-xPdxO2-δ Solid Solution in Combustion-Synthesized Pd/CeO2 Catalyst: XRD, XPS, and EXAFS Investigation. Chem. Mat. 2002, 14, 2120–2128. [Google Scholar] [CrossRef]
- Figueroba, A.; Bruix, A.; Kovács, G.; Neyman, K.M. Metal-Doped Ceria Nanoparticles: Stability and Redox Processes. Phys. Chem. Chem. Phys. 2017, 19, 21729–21738. [Google Scholar] [CrossRef]
- Neitzel, A.; Figueroba, A.; Lykhach, Y.; Skála, T.; Vorokhta, M.; Tsud, N.; Mehl, S.; Ševčíková, K.; Prince, K.C.; Neyman, K.M.; et al. Atomically Dispersed Pd, Ni, and Pt Species in Ceria-Based Catalysts: Principal Differences in Stability and Reactivity. J. Phys. Chem. C 2016, 120, 9852–9862. [Google Scholar] [CrossRef]
- Figueroba, A.; Kovács, G.; Bruix, A.; Neyman, K.M. Towards Stable Single-Atom Catalysts: Strong Binding of Atomically Dispersed Transition Metals on the Surface of Nanostructured Ceria. Catal. Sci. Technol. 2016, 6, 6806–6813. [Google Scholar] [CrossRef] [Green Version]
- Nasluzov, V.A.; Ivanova-Shor, E.A.; Shor, A.M.; Neyman, K.M. Silver Atom, Trimer and Tetramer Species Supported on a Ceria Nanoparticle: A Density Functional Study. Surf. Sci. 2019, 681, 38–46. [Google Scholar] [CrossRef]
- Li, L.; Chang, X.; Lin, X.; Zhao, Z.-J.; Gong, J. Theoretical Insights into Single-Atom Catalysts. Chem. Soc. Rev. 2020, 49, 8156–8178. [Google Scholar] [CrossRef]
- Ding, W.-C.; Gu, X.-K.; Su, H.-Y.; Li, W.-X. Single Pd Atom Embedded in CeO2(111) for NO Reduction with CO: A First-Principles Study. J. Phys. Chem. C 2014, 118, 12216–12223. [Google Scholar] [CrossRef]
- Nasluzov, V.A.; Neyman, K.M.; Shor, A.M.; Laletina, S.S.; Ivanova-Shor, E.A. Density Functional Calculation of Dioxygen Adsorption at Complexes of Ceria Nanoparticle with Atoms, Trimers and Tetramers of Silver. J. Sib. Fed. Univ. Chem. 2016, 3, 281–295. [Google Scholar] [CrossRef]
- Preda, G.; Pacchioni, G. Formation of oxygen active species in Ag-modified CeO2 catalyst for soot oxidation: A DFT study, Catal. Today 2011, 177, 31–38. [Google Scholar] [CrossRef]
- Brugnoli, L.; Pedone, A.; Menziani, M.C.; Adamo, C.; Labat, F. O2 Activation over Ag-Decorated CeO2 (111) and TiO2 (110) Surfaces: A Theoretical Comparative Investigation. J. Phys. Chem. C 2020, 124, 25917–25930. [Google Scholar] [CrossRef]
- Bromley, S.T.; de Moreira I, P.R.; Neyman, K.M.; Illas, F. Approaching Nanoscale Oxides: Models and Theoretical Methods. Chem. Soc. Rev. 2009, 38, 2657. [Google Scholar] [CrossRef] [PubMed]
- Bruix, A.; Neyman, K.M. Modeling Ceria-Based Nanomaterials for Catalysis and Related Applications. Catal. Lett. 2016, 146, 2053–2080. [Google Scholar] [CrossRef]
- Loschen, C.; Migani, A.; Bromley, S.T.; Illas, F.; Neyman, K.M. Density Functional Studies of Model Cerium Oxide Nanoparticles. Phys. Chem. Chem. Phys. 2008, 10, 5730–5738. [Google Scholar] [CrossRef]
- Migani, A.; Vayssilov, G.N.; Bromley, S.T.; Illas, F.; Neyman, K.M. Greatly Facilitated Oxygen Vacancy Formation in Ceria Nanocrystallites. Chem. Comm. 2010, 46, 5936. [Google Scholar] [CrossRef]
- Bruix, A.; Neyman, K.M. How to design models for ceria nanoparticles: Challenges and strategies for describing nanostructured reducible oxides. In Computational Modelling of Nanoparticles, Frontiers of Nanoscience; Bromley, S.T., Woodley, S.M., Eds.; Elsevier: Oxford, UK, 2018; Volume 12, pp. 55–99. ISBN 978-0-08-102232-0. [Google Scholar]
- Bruix, A.; Lykhach, Y.; Matolínová, I.; Neitzel, A.; Skála, T.; Tsud, N.; Vorokhta, M.; Stetsovych, V.; Ševčíková, K.; Mysliveček, J.; et al. Maximum Noble-Metal Efficiency in Catalytic Materials: Atomically Dispersed Surface Platinum. Angew. Chem. Int. Ed. 2014, 53, 10525–10530. [Google Scholar] [CrossRef]
- Aleksandrov, H.A.; Neyman, K.M.; Vayssilov, G.N. The Structure and Stability of Reduced and Oxidized Mononuclear Platinum Species on Nanostructured Ceria from Density Functional Modeling. Phys. Chem. Chem. Phys. 2015, 17, 14551–14560. [Google Scholar] [CrossRef]
- Koleva, I.Z.; Aleksandrov, H.A.; Vayssilov, G.N. Decomposition Behavior of Platinum Clusters Supported on Ceria and γ-Alumina in the Presence of Carbon Monoxide. Catal. Sci. Technol. 2017, 7, 734–742. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Blöchl, P.E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Viñes, F.; Illas, F.; Neyman, K.M. On the Mechanism of Formation of Metal Nanowires by Self-Assembly. Angew. Chem. Int. Ed. 2007, 46, 7094–7097. [Google Scholar] [CrossRef] [PubMed]
- Sk, M.A.; Kozlov, S.M.; Lim, K.H.; Migani, A.; Neyman, K.M. Oxygen Vacancies in Self-Assemblies of Ceria Nanoparticles. J. Mater. Chem. A 2014, 2, 18329–18338. [Google Scholar] [CrossRef]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Phys. Rev. B 1992, 46, 6671–6687, Erratum in 1993, 48, 4978–4978. [Google Scholar] [CrossRef]
- Rohrbach, A.; Hafner, J.; Kresse, G. Electronic Correlation Effects in Transition-Metal Sulfides. J. Phys. Condens. Matter 2003, 15, 979–996. [Google Scholar] [CrossRef]
- Dudarev, S.L.; Savrasov, S.Y.; Humphreys, C.J.; Sutton, A.P. Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study. Phys. Rev. B 1998, 57, 1505–1509. [Google Scholar] [CrossRef]
- Loschen, C.; Carrasco, J.; Neyman, K.; Illas, F. First-Principles LDA+U and GGA+U Study of Cerium Oxides: Dependence on the Effective U Parameter. Phys. Rev. B 2007, 75, 035117. [Google Scholar] [CrossRef] [Green Version]
- Bennett, L.J.; Jones, G. The Influence of the Hubbard U Parameter in Simulating the Catalytic Behaviour of Cerium Oxide. Phys. Chem. Chem. Phys. 2014, 16, 21032–21038. [Google Scholar] [CrossRef]
- Vayssilov, G.N.; Migani, A.; Neyman, K. Density Functional Modeling of the Interactions of Platinum Clusters with CeO2 Nanoparticles of Different Size. J. Phys. Chem. C 2011, 115, 16081–16086. [Google Scholar] [CrossRef]
- Bruix, A.; Migani, A.; Vayssilov, G.N.; Neyman, K.M.; Libuda, J.; Illas, F. Effects of Deposited Pt Particles on the Reducibility of CeO2(111). Phys. Chem. Chem. Phys. 2011, 13, 11384. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Fabris, S. CO Adsorption and Oxidation on Ceria Surfaces from DFT+U Calculations. J. Phys. Chem. C 2008, 112, 8643–8648. [Google Scholar] [CrossRef]
- Weinan, E.; Ren, W.; Vanden-Eijnden, E. String Method for the Study of Rare Events. Phys. Rev. B 2002, 66, 052301. [Google Scholar] [CrossRef] [Green Version]
- Chaffey-Millar, H.; Nikodem, A.; Matveev, A.V.; Krüger, S.; Rösch, N. Improving Upon String Methods for Transition State Discovery. J. Chem. Theor. Comput. 2012, 8, 777–786. [Google Scholar] [CrossRef] [PubMed]
- Vayssilov, G.N.; Mihaylov, M.; Petkov, P.S.; Hadjiivanov, K.I.; Neyman, K.M. Reassignment of the Vibrational Spectra of Carbonates, Formates, and Related Surface Species on Ceria: A Combined Density Functional and Infrared Spectroscopy Investigation. J. Phys. Chem. C 2011, 115, 23435–23454. [Google Scholar] [CrossRef]
- Hulva, J.; Meier, M.; Bliem, R.; Jakub, Z.; Kraushofer, F.; Schmid, M.; Diebold, U.; Franchini, C.; Parkinson, G.S. Unraveling CO Adsorption on Model Single-atom Catalysts. Science 2021, 371, 375–379. [Google Scholar] [CrossRef]
- Liang, B.; Zhou, M.; Andrews, L. Reactions of Laser-Ablated Ni, Pd, and Pt Atoms with Carbon Monoxide: Matrix Infra-red Spectra and Density Functional Calculations on M(CO)n (n = 1−4), M(CO)n− (n = 1−3), and M(CO)n+ (n = 1−2), (M = Ni, Pd, Pt). J. Phys. Chem. A 2000, 104, 3905–3914. [Google Scholar] [CrossRef]
- Zhong, S.-H.; Lu, G.; Gong, X.-Q. A DFT+U Study of the Structures and Reactivities of Polar CeO2(100) Surfaces. Chinese J. Catal. 2017, 38, 1138–1147. [Google Scholar] [CrossRef]
- Kumari, N.; Haider, M.A.; Agarwal, M.; Sinha, N.; Basu, S. Role of Reduced CeO2(110) Surface for CO2 Reduction to CO and Methanol. J. Phys. Chem. C 2016, 120, 16626–16635. [Google Scholar] [CrossRef]
- Hahn, K.R.; Iannuzzi, M.; Seitsonen, A.P.; Hutter, J. Coverage Effect of the CO2 Adsorption Mechanisms on CeO2(111) by First Principles Analysis. J. Phys. Chem. C 2013, 117, 1701–1711. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Liu, D.; Zhang, J.; Hu, P.; Gong, X.-Q.; Lu, G. A DFT+U Study of the Lattice Oxygen Reactivity toward Direct CO Oxidation on the CeO2(111) and (110) Surfaces. Phys. Chem. Chem. Phys. 2012, 14, 16573. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Sherman, B.J.; Lo, C.S. Carbon Dioxide Activation and Dissociation on Ceria (110): A Density Functional Theory Study. J. Chem. Phys. 2013, 138, 014702. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Wang, W.; Wei, S.; Guo, C.; Shao, Y.; Zhang, M.; Deng, Z.; Zhu, H.; Guo, W. Initial Reduction of CO2 on Perfect and O-Defective CeO2(111) Surfaces: Towards CO or COOH? RSC Adv. 2015, 5, 97528–97535. [Google Scholar] [CrossRef]
- Gibson, D.H. Carbon Dioxide Coordination Chemistry: Metal Complexes and Surface-Bound Species. What Relationships? Coord. Chem. Rev. 1999, 185–186, 335–355. [Google Scholar] [CrossRef]
- Albrecht, P.M.; Jiang, D.; Mullins, D.R. CO2 Adsorption As a Flat-Lying, Tridentate Carbonate on CeO2(100). J. Phys. Chem. C 2014, 118, 9042–9050. [Google Scholar] [CrossRef]
- Scanlon, D.O.; Galea, N.M.; Morgan, B.J.; Watson, G.W. Reactivity on the (110) Surface of Ceria: A GGA+U Study of Surface Reduction and the Adsorption of CO and NO2. J. Phys. Chem. C 2009, 113, 11095–11103. [Google Scholar] [CrossRef]
- Nolan, M.; Parker, S.C.; Watson, G.W. CeO2 Catalysed Conversion of CO, NO2 and NO from First Principles Energetics. Phys. Chem. Chem. Phys. 2006, 8, 216. [Google Scholar] [CrossRef] [Green Version]
- Binet, C.; Daturi, M.; Lavalley, J.-C. IR Study of Polycrystalline Ceria Properties in Oxidised and Reduced States. Catal. Today 1999, 50, 207–225. [Google Scholar] [CrossRef]
- Lustemberg, P.G.; Plessow, P.N.; Wang, Y.; Yang, C.; Nefedov, A.; Studt, F.; Wöll, C.; Ganduglia-Pirovano, M.V. Vibra-tional Frequencies of Cerium-Oxide-Bound CO: A Challenge for Conventional DFT Methods. Phys. Rev. Lett. 2020, 125, 256101. [Google Scholar] [CrossRef] [PubMed]
- Nolan, M.; Parker, S.C.; Watson, G.W. Vibrational Properties of CO on Ceria Surfaces. Surf. Sci. 2006, 600, 175–178. [Google Scholar] [CrossRef]
- Aleksandrov, H.A.; Neyman, K.M.; Hadjiivanov, K.I.; Vayssilov, G.N. Can the State of Pla¬tinum Species Be Unambiguously Determined by the Stretching Frequency of an Adsorbed CO Probe Molecule? Phys. Chem. Chem. Phys. 2016, 18, 22108–22121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Sakata, Y.; Arai, T.; Domen, K.; Maruya, K.; Onishi, T. Carbon Monoxide and Carbon Dioxide Adsorption on Cerium Oxide Studied by Fourier-Transform Infrared Spectroscopy. Part 1.-Formation of Carbonate Species on Dehydroxylated CeO2, at Room Temperature. J. Chem. Soc. Faraday Trans. 1989, 85, 929. [Google Scholar] [CrossRef]
- Chen, S.; Cao, T.; Gao, Y.; Li, D.; Xiong, F.; Huang, W. Probing Surface Structures of CeO2, TiO2, and Cu2O Nanocrystals with CO and CO2 Chemisorption. J. Phys. Chem. C 2016, 120, 21472–21485. [Google Scholar] [CrossRef]
- Liang, B.; Andrews, L. Reactions of Laser-Ablated Ag and Au Atoms with Carbon Monoxide: Matrix Infrared Spectra and Density Functional Calculations on Ag(CO)n (n = 2, 3), Au(CO)n (n = 1, 2) and M(CO)n+ (n = 1−4; M = Ag, Au). J. Phys. Chem. A 2000, 104, 9156–9164. [Google Scholar] [CrossRef]
- Jacox, M.E.; Thompson, W.E. The Vibrational Spectra of Molecular Ions Isolated in Solid Neon. I. CO2+ and CO2−. J. Chem. Phys. 1989, 91, 1410–1416. [Google Scholar] [CrossRef]
- Rasko, J.; Solymosi, F. Infrared Spectroscopic Study of the Photoinduced Activation of CO2 on TiO2 and Rh/TiO2 Catalysts. J. Phys. Chem. 1994, 98, 7147–7152. [Google Scholar] [CrossRef]
- Binet, C.; Badri, A.; Boutonnet-Kizling, M.; Lavalley, J.-C. FTIR Study of Carbon Monoxide Adsorption on Ceria: CO22− Carbonite Dianion Adsorbed Species. J. Chem. Soc. Faraday Trans. 1994, 90, 1023. [Google Scholar] [CrossRef]
- Kafafi, Z.H.; Hauge, R.H.; Billups, W.E.; Margrave, J.L. Carbon Dioxide Activation by Alkali Metals. 2. Infrared Spectra of M+CO2− and M22+CO22− in Argon and Nitrogen Matrixes. Inorg. Chem. 1984, 23, 177–183. [Google Scholar] [CrossRef]
System a | r(M-C) | r(M-O) | r(Ce-O) b | r(C-O) c | N | m | Eb(CO) | Eb(CO2) |
---|---|---|---|---|---|---|---|---|
pm | pm | pm | pm | eV | eV | |||
Complexes with CO | ||||||||
Pd1a | 296 d | - | - | 114 | 2 | 2 | −0.26 | - |
Pd1b | 241 | - | - | 115 | 2 | 2 | −0.13 | - |
Pd1c | 188 | - | - | 116 | 1 | 0 | 0.13 | - |
Pd1aV | 187 | - | - | 116 | 4 | 4 | −1.74 | - |
Ag1a | 201 | - | - | 115 | 1 | 1 | −0.80 | - |
Ag1aV | 198 | - | - | 115 | 3 | 3 | −0.78 | - |
1a | 293 d | - | - | 114 | 0 | 0 | −0.26 | - |
1aV | 297 d | - | - | 114 | 2 | 2 | −0.23 | - |
Complexes with CO2 | ||||||||
Pd2a | 206 | - | 247 | 2 × 127 | 2 | 0 | −1.43 | −1.20 |
Pd2b | - | - | 314 | 2 × 118 | 2 | 0 | −0.41 | −0.18 |
Pd2aV | 193 | 237 | 268 | 129; 124 | 4 | 4 | −2.33 | −0.72 |
Pd2bV | 330 | - | 321 | 2 × 118 | 4 | 4 | −1.77 | −0.16 |
Ag2a | 356 | - | 316 | 2 × 118 | 3 | 3 | −1.37 | −0.16 |
Ag2b | 234 | - | 268 | 122; 121 | 3 | 1 | −1.22 | −0.01 |
Ag2aV | 207 | - | 249 | 2 × 132 | 3 | 1 | −1.13 | −0.10 |
Ag2bV | 342 | - | 348 | 2 × 118 | 5 | 1 | −1.10 | −0.07 |
2a | - | - | 300 | 2 × 118 | 2 | 0 | −1.69 | −0.25 |
2aV | - | - | 310 | 2 × 118 | 4 | 2 | −1.16 | −0.15 |
2bV | - | - | 254 | 2 × 125 | 3 | 2 | −0.42 | 0.59 |
Complexes with CO32− | ||||||||
Pd3a | 249 | 207 | 260 | 2 × 133; 125 | 4 | 2 | −1.68 | −1.44 |
Pd3b | 265 | 209 | 248 | 129; 135; 129 | 3 | 2 | −0.99 | −0.75 |
Pd3c | - | 212 | 245 | 133; 143; 121 | 2 | 0 | −0.74 | −0.50 |
Pd3aV | 275 | 211 | 258 | 132; 132; 128 | 4 | 2 | −2.67 | −1.06 |
Pd3bV | 288 | 211 | 247 | 131; 143; 122 | 4 | 0 | −2.28 | −0.67 |
Ag3a | 277 | 221 | 245 | 130; 135; 127 | 3 | 1 | −2.72 | −1.49 |
Ag3b | 289 | 233 | 247 | 132; 141; 122 | 3 | 1 | −2.09 | −0.86 |
Ag3aV | 273 | 216 | 265 | 130; 132; 130 | 5 | 1 | −2.36 | −1.40 |
Ag3bV | 291 | 211 | 255 | 129; 146; 122 | 5 | 1 | −2.09 | −1.13 |
3a | - | - | 237 | 133; 138; 122 | 2 | 0 | −2.59 | −1.15 |
3b | - | - | 250 | 129; 132; 129 | 2 | 2 | −2.28 | −0.84 |
3aV | - | - | 262 | 130; 131; 130 | 4 | 2 | −3.23 | −2.22 |
3bV | - | - | 229 | 133; 137; 122 | 4 | 2 | −2.53 | −1.52 |
Model a | CO → CO2 | CO2 → CO3 | ||||
---|---|---|---|---|---|---|
E(OV) | Eox b | E*CO2 c | E≠ | E*CO3 d | E≠ | |
Ce21O42 | 1.87 | −1.44 | −1.43 | 1.02 | −0.90 | 0.27 |
Ce21O41 | 2.31 | −1.01 | −0.92 | 0.82 | −2.07 | 0.82 |
Ag/Ce21O42 | 2.08 | −1.21 | −0.52 | 0.88 | −1.50 | 0.78 |
Ag/Ce21O41 | 2.28 | −1.03 | −0.35 | 0.53 | −1.23 | 1.73 |
Pd/Ce21O42 | 3.08 | −0.23 | −1.30 | 0.51 | −0.25 | 1.83 |
Pd/Ce21O41 | 1.70 | −1.61 | −0.59 | 1.06 | −0.34 | 1.80 |
System a | ν(CO) cm−1 | Δν(CO) cm−1 | ν(CO2) cm−1 | Δν(CO2) cm−1 | ν(CO3) cm−1 |
---|---|---|---|---|---|
Complexes with CO | |||||
Pd1a | 2158 | 27 | - | - | - |
Pd1b | 2047 | −84 | - | - | - |
Pd1c | 2022 | −109 | - | - | - |
Pd1aV | 2018 | −113 | - | - | - |
Ag1a | 2081 | −50 | - | - | - |
Ag1aV | 2070 | −61 | - | - | - |
1a | 2162 | 31 | - | - | - |
1aV | 2165 | 34 | - | - | - |
Complexes with CO2 | |||||
Linear O-C-O | |||||
Pd2b | - | - | 2323 | −40 | - |
Pd2bV | - | - | 2332 | −31 | - |
Ag2a | - | - | 2348 | −15 | - |
Ag2bV | - | - | 2350 | −13 | - |
2a | - | - | 2354 | −9 | - |
2aV | - | - | 2360 | −3 | - |
Bent O-C-O | |||||
Pd2a | - | - | 1535 | −828 | - |
Pd2aV | - | - | 1628 | −735 | - |
Ag2aV | - | - | 1332 | −1031 | - |
Ag2b | - | - | 1950 | −413 | - |
2bV | - | - | 1657 | −706 | - |
Complexes with CO32− | |||||
Tridentate | |||||
Pd3a | - | - | - | - | 1573; 1221 |
Pd3b | - | - | - | - | 1451; 1243 |
Pd3aV | - | - | - | - | 1442; 1309 |
Ag3a | - | - | - | - | 1511; 1233 |
Ag3aV | - | - | - | - | 1434; 1337 |
3b | - | - | - | - | 1442; 1280 |
3aV | - | - | - | - | 1400; 1353 |
Bidentate | |||||
Pd3c | - | - | - | - | 1746; 1118 |
Pd3bV | - | - | - | - | 1729; 1122 |
Ag3b | - | - | - | - | 1689; 1126 |
Ag3bV | - | - | - | - | 1752; 1169 |
3a | - | - | - | - | 1714; 1082 |
3bV | - | - | - | - | 1704; 1101 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasluzov, V.A.; Ivanova-Shor, E.A.; Shor, A.M.; Laletina, S.S.; Neyman, K.M. Adsorption and Oxidation of CO on Ceria Nanoparticles Exposing Single-Atom Pd and Ag: A DFT Modelling. Materials 2021, 14, 6888. https://doi.org/10.3390/ma14226888
Nasluzov VA, Ivanova-Shor EA, Shor AM, Laletina SS, Neyman KM. Adsorption and Oxidation of CO on Ceria Nanoparticles Exposing Single-Atom Pd and Ag: A DFT Modelling. Materials. 2021; 14(22):6888. https://doi.org/10.3390/ma14226888
Chicago/Turabian StyleNasluzov, Vladimir A., Elena A. Ivanova-Shor, Aleksey M. Shor, Svetlana S. Laletina, and Konstantin M. Neyman. 2021. "Adsorption and Oxidation of CO on Ceria Nanoparticles Exposing Single-Atom Pd and Ag: A DFT Modelling" Materials 14, no. 22: 6888. https://doi.org/10.3390/ma14226888
APA StyleNasluzov, V. A., Ivanova-Shor, E. A., Shor, A. M., Laletina, S. S., & Neyman, K. M. (2021). Adsorption and Oxidation of CO on Ceria Nanoparticles Exposing Single-Atom Pd and Ag: A DFT Modelling. Materials, 14(22), 6888. https://doi.org/10.3390/ma14226888