Experimental Investigation and Thermodynamic Verification for the Phase Relation around the ε-Mg23 (Al, Zn)30 Intermetallic Compound in the Mg-Zn-Al System
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. Phase Equilibrium Containing ε Intermetallic Compound
3.2. Vertical Sections around ε Intermetallic Compound
3.3. Diffusion Path Related to ε Intermetallic Compound
4. Conclusions
- The existence of ε, ε + γ, ε + β, ε + γ + τ, and ε + β + τ phase regions in the isothermal section of the Mg-Zn-Al alloy system were confirmed by the analysis of the currently prepared samples. The maximum solid solubility of Zn in ε phase was determined as 7.7% at 350 °C.
- The melting temperature of ε phase with dissolved 3.9% Zn was 456 °C, which increased to 465 °C as the Zn content rose to 7.7%, indicating that Zn can improve the high temperature stability of ε phase within its solid solubility.
- Zn atoms dissolved in ε phase preferred to replace the sites of the Al atoms to decrease the total content of Al, and the homogenization range of Mg in the ε phase was from 43.77% to 46.38%. Further modification of the thermodynamic description of Mg-Zn-Al in this region is required.
- The MgZn2-Al3Mg2 diffusion couple at 410 °C in this study showed a thicker interlayer of τ phase than of ε phase, indicating a faster elemental diffusion within τ phase. Moreover, the nonlinear elemental distributions within τ and ε IMCs imply the composition dependence of elemental diffusivities.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mordike, B.L.; Ebert, T. Magnesium—Properties—Applications—Potential. Mater. Sci. Eng. A 2001, 302, 37–45. [Google Scholar] [CrossRef]
- Zeng, R.C.; Zhang, J.; Huang, W.J.; Dietzel, W.; Kainer, K.U.; Blawert, C.; Ke, W. Review of studies on corrosion of magnesium alloys. Trans. Nonferrous Met. Soc. China 2006, 16, 763–771. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, Z.X.; Pan, F.; Li, Z.; Luo, X. Effect of composition on the microstructure and mechanical properties of Mg–Zn–Al alloys. Mater. Sci. Eng. A 2007, 456, 43–51. [Google Scholar] [CrossRef]
- Van Phuong, N.; Moon, S.; Chang, D.; Lee, K.H. Effect of microstructure on the zinc phosphate conversion coatings on magnesium alloy AZ91. Appl. Surf. Sci. 2013, 264, 70–78. [Google Scholar] [CrossRef]
- Yeganeh, M.; Mohammadi, N. Superhydrophobic surface of Mg alloys: A review. J. Magnes. Alloys 2018, 6, 59–70. [Google Scholar] [CrossRef]
- Song, J.; She, J.; Chen, D.; Pan, F. Latest research advances on magnesium and magnesium alloys worldwide. J. Magnes. Alloys 2020, 8, 1–41. [Google Scholar] [CrossRef]
- Aryshenskii, E.; Hirsch, J.; Konovalov, S.; Aryshenskii, V.; Drits, A. Influence of Mg Content on Texture Development during Hot Plain-Strain Deformation of Aluminum Alloys. Metals 2021, 11, 865. [Google Scholar] [CrossRef]
- Shi, R. Nonisothermal dissolution kinetics on Mg17Al12 intermetallic in Mg-Al alloys. J. Magnes. Alloys 2021. [Google Scholar] [CrossRef]
- Luo, A.A.; Balogh, M.P.; Powell, B.R. Creep and microstructure of magnesium-aluminum-calcium based alloys. Metall. Mater. Trans. A 2002, 33, 567–574. [Google Scholar] [CrossRef]
- Kabirian, F.; Mahmudi, R. Effects of Zr Additions on the Microstructure and Impression Creep Behavior of AZ91 Magnesium Alloy. Metall. Mater. Trans. A 2010, 41, 3488–3498. [Google Scholar] [CrossRef]
- Karakulak, E. A review: Past, present and future of grain refining of magnesium castings. J. Magnes. Alloys 2019, 7, 355–369. [Google Scholar] [CrossRef]
- Tang, Y.; Li, Y.; Zhao, W.; Roslyakova, I.; Zhang, L. Thermodynamic descriptions of quaternary Mg–Al–Zn–Bi system supported by experiments and their application in descriptions of solidification behavior in Bi-additional AZ casting alloys. J. Magnes. Alloys 2020, 8, 1238–1252. [Google Scholar] [CrossRef]
- Zhang, Z.; Couture, A. An investigation of the properties of Mg-Zn-Al alloys. Scr. Mater. 1998, 39, 45–53. [Google Scholar] [CrossRef]
- Cheng, K.; Sun, J.; Xu, H.; Wang, J.; Zhou, J.; Tang, S.; Wang, X.; Zhang, L.; Du, Y. On the temperature-dependent diffusion growth of ϕ-Mg5Al2Zn2 ternary intermetallic compound in the Mg-Al-Zn system. J. Mater. Sci. 2020, 56, 3488–3497. [Google Scholar] [CrossRef]
- Cheng, K.; Sun, J.; Xu, H.; Wang, J.; Zhan, C.; Ghomashchi, R.; Zhou, J.; Tang, S.; Zhang, L.; Du, Y. Diffusion growth of ϕ ternary intermetallic compound in the Mg-Al-Zn alloy system: In-situ observation and modeling. J. Mater. Sci. Technol. 2021, 60, 222–229. [Google Scholar] [CrossRef]
- Shi, Z.Z.; Zhang, W.Z. Investigation on the microstructure of a τ-Mg32(Al, Zn)49 strengthened Mg-Zn-Al alloy with relatively low Zn content. Phase Transit. 2012, 85, 41–51. [Google Scholar] [CrossRef]
- Wang, D.; Liu, J.; Xiao, B.; Ma, Z. Mg/Al reaction and Mechanical properties of Al alloy/Mg alloy fricton stir weding joints. Acta Metall. Sin. 2010, 46, 589–594. [Google Scholar] [CrossRef]
- Mohammadi, J.; Behnamian, Y.; Mostafaei, A.; Izadi, H.; Saeid, T.; Kokabi, A.H.; Gerlich, A.P. Friction stir welding joint of dissimilar materials between AZ31B magnesium and 6061 aluminum alloys: Microstructure studies and mechanical characterizations. Mater. Charact. 2015, 101, 189–207. [Google Scholar] [CrossRef]
- Sun, L.; Hui, W.; Zhou, Y.; Zhai, W.; Dong, H.; Liu, Y.; Gao, Q.; Dang, M.; Peng, J. The Electronic Structural and Elastic Properties of Mg23Al30 Intermediate Phase under High Pressure. Crystals 2020, 10, 642. [Google Scholar] [CrossRef]
- Wang, Y.; Prangnell, P.B. Evaluation of Zn-rich coatings for IMC reaction control in aluminum-magnesium dissimilar welds. Mater. Charact. 2018, 139, 100–110. [Google Scholar] [CrossRef] [Green Version]
- Eger, G. Study of the Constitution of Ternary Magnesium-Aluminum-Zinc Alloys. Z. Fur Met. 1913, 4, 29–128. [Google Scholar]
- Bergman, G.; Waugh, J.L.T.; Pauling, L. Crystal Structure of the Intermetallic Compound Mg32(AI,Zn)49 and Related Phases. Nature 1952, 169, 1057–1058. [Google Scholar] [CrossRef]
- Bergman, G.; Waugh, J.L.; Pauling, L. The crystal structure of the metallic phase Mg32(Al,Zn)49. Acta Crystallogr. 1957, 10, 254–259. [Google Scholar] [CrossRef]
- Clark, J.B.; Rhines, F.N. Diffusion layer formation in the ternary system aluminum-magnesium-zinc. Trans. Am. Math. Soc. 1959, 51, 199–221. [Google Scholar]
- Clark, J.B. Phase relations in the magnesium-rich region of the Mg-Al-Zn phase diagram. Trans. Am. Math. Soc. 1961, 53, 295–306. [Google Scholar]
- Willey, L.D. Metals Handbook; American Society for Metals: Novelty, OH, USA, 1973; Volume 8, pp. 397–399. [Google Scholar]
- Liang, P.; Tarfa, T.; Robinson, J.A.; Wagner, S.; Ochin, P.; Harmelin, M.G.; Seifert, H.J.; Lukas, H.L.; Aldinger, F. Experimental investigation and thermodynamic calculation of the Al-Mg-Zn system. Thermochim. Acta 1998, 314, 87–110. [Google Scholar] [CrossRef]
- Liang, H.; Chen, S.L.; Chang, Y.A. A Thermodynamic Description of the Al-Mg-Zn System. Metall. Mater. Trans. A 1997, 28, 1725–1734. [Google Scholar] [CrossRef]
- Ren, Y.P.; Qin, G.W.; Pei, W.L.; Guo, Y.; Zhao, H.D.; Li, H.X.; Jiang, M.; Hao, S.M. The α-Mg solvus and isothermal section of Mg-rich corner in the Mg-Zn-Al ternary system at 320 °C. J. Alloys Compd. 2009, 481, 176–181. [Google Scholar] [CrossRef]
- Ren, Y.P.; Qin, G.W.; Pei, W.L.; Li, S.; Guo, Y.; Zhao, H.D. Phase equilibria of Mg-rich corner in Mg-Zn-Al ternary system at 300 °C. Trans. Nonferrous Met. Soc. China 2012, 22, 241–245. [Google Scholar] [CrossRef]
- Ren, Y.P.; Sun, S.N.; Wang, L.Q.; Guo, Y.; Li, H.X.; Li, S.; Qin, G.W. Isothermal section of Mg-rich corner in Mg-Zn-Al ternary system at 335 °C. Trans. Nonferrous Met. Soc. China 2014, 24, 3405–3412. [Google Scholar] [CrossRef]
- Ohno, M.; Mirkovic, D.; Schmid-Fetzer, R. Phase equilibria and solidification of Mg-rich Mg-Al-Zn alloys. Mater. Sci. Eng. A 2006, 421, 328–337. [Google Scholar] [CrossRef]
Samples | Nominal Compositions (at.%) | Phases and Composition (at.%) at 350 °C | |||||
---|---|---|---|---|---|---|---|
Mg | Zn | Al | Phase | Mg | Zn | Al | |
1 | 43.35 | 3.04 | 53.61 | ε | 42.92 | 3.90 | 53.18 |
2 | 47.73 | 2.87 | 49.40 | ε | 44.72 | 4.05 | 51.23 |
γ | 51.80 | 2.89 | 45.31 | ||||
3 | 41.21 | 2.50 | 56.29 | ε | 43.72 | 3.27 | 53.01 |
β | 39.64 | 2.64 | 57.72 | ||||
4 | 47.32 | 7.60 | 45.08 | ε | 46.38 | 7.70 | 45.93 |
γ | 54.04 | 4.09 | 41.87 | ||||
τ | 45.03 | 11.28 | 43.69 | ||||
5 | 41.33 | 7.00 | 51.68 | ε | 43.77 | 7.03 | 49.20 |
β | 39.29 | 5.39 | 55.32 | ||||
τ | 41.06 | 10.50 | 48.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Sun, J.; Cheng, K.; Wang, J.; Zhan, C.; Zhao, J.; Wang, X.; Tang, S.; Zhou, J.; Zhang, L.; et al. Experimental Investigation and Thermodynamic Verification for the Phase Relation around the ε-Mg23 (Al, Zn)30 Intermetallic Compound in the Mg-Zn-Al System. Materials 2021, 14, 6892. https://doi.org/10.3390/ma14226892
Zheng Y, Sun J, Cheng K, Wang J, Zhan C, Zhao J, Wang X, Tang S, Zhou J, Zhang L, et al. Experimental Investigation and Thermodynamic Verification for the Phase Relation around the ε-Mg23 (Al, Zn)30 Intermetallic Compound in the Mg-Zn-Al System. Materials. 2021; 14(22):6892. https://doi.org/10.3390/ma14226892
Chicago/Turabian StyleZheng, Yan, Jiaxing Sun, Kaiming Cheng, Jin Wang, Chengwei Zhan, Jingrui Zhao, Xitao Wang, Shouqiu Tang, Jixue Zhou, Lijun Zhang, and et al. 2021. "Experimental Investigation and Thermodynamic Verification for the Phase Relation around the ε-Mg23 (Al, Zn)30 Intermetallic Compound in the Mg-Zn-Al System" Materials 14, no. 22: 6892. https://doi.org/10.3390/ma14226892
APA StyleZheng, Y., Sun, J., Cheng, K., Wang, J., Zhan, C., Zhao, J., Wang, X., Tang, S., Zhou, J., Zhang, L., & Du, Y. (2021). Experimental Investigation and Thermodynamic Verification for the Phase Relation around the ε-Mg23 (Al, Zn)30 Intermetallic Compound in the Mg-Zn-Al System. Materials, 14(22), 6892. https://doi.org/10.3390/ma14226892