Complex Structural Effects in Deformed High-Manganese Steel
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Tensile Test and Microhardness Measurements
3.2. X-ray Phase Analysis
3.3. Crystallographic Texture Measurements
3.4. Microstructure Observations by LM and TEM
3.5. EBSD Analysis
4. Discussion
5. Conclusions
- The austenitic structure of the examined high-manganese Fe-Mn-Al-Si steel, with the estimated SFE value of 14 mJ/m2, turned out to be unstable during tensile deformation, starting from the range of relatively small deformations.
- Low stability of the parent γ-austenite was manifested by the occurrence of strain induced martensitic transformations (γ → ε → α′) as well as (γ → α′). Apart from dislocation slip, the mechanical twinning was additionally the active deformation mechanism. Thus, the examined steel revealed behavior typical for TRIP and TWIP steels, respectively.
- In the studied Fe-Mn-Si-Al steel, the formation of strain-induced cubic α’-martensite proceeded both, directly from the parent austenite (γ → α′) and through the intermediate hexagonal ε-phase (γ → ε → α′). The EBSD analysis indicates that indirect mechanism of the α’-martensite formation prevailed during tensile deformation.
- The occurrence of strain induced transformations resulted in the appearance of preferential crystallographic relations between the parent γ-austenite and the product ε- and α′-martensite. The crystallographic relations of Shoji-Nishiyama (S-N)—{111}γ‖{0001}ε and <110>γ‖<1120>ε as well as Kurdjumov-Sachs (K-S)—{111}γ‖{101}α′ and <101>γ‖<111>α′ were detected during tensile deformation.
- It was possible to recognize two different mechanisms of the α′-martensite formation, namely: the classic and frequently observed mechanism of the intersecting sets of deformation bands from the two non-parallel systems and the second one, based on the pile-ups of partial dislocations within a set of parallel bands from a single deformation system.
- The formation of strain-induced ε- and α′-martensite proceeded in a non-uniform way and in general occurred the most effective in austenite grains showing a high density of deformation bands. Therefore, it seems very likely that the formation of strain-induced martensitic phases depends on the crystallographic orientation of austenite grains to the extent that this orientation affects the local dislocation activation and further the efficient formation of banded deformation structure.
- The strength and plasticity of the examined Fe-Mn-Al-Si steel exceeded those of plain carbon steels. The explanation of this advantageous combination of mechanical properties seems to result from the course of the deformation process involving both mechanical twinning and strain-induced martensitic transformations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Antunes, R.A.; de Oliveira, M.C.L. Materials selection for hot stamped automotive body parts: An application of the Ashby approach based on the strain hardening exponent and stacking fault energy of materials. Mater. Des. 2014, 63, 247–256. [Google Scholar] [CrossRef]
- Asghari, A.; Zarei-Hanzaki, A.; Eskandari, M. Temperature dependence of plastic deformation mechanisms in a modified transformation-twinning induced plasticity steel. Mater. Sci. Eng. A 2013, 579, 150–156. [Google Scholar] [CrossRef]
- Koyama, M.; Sawaguchi, T.; Lee, T.; Lee, C.S.; Tzuzaki, K. Work hardening associated with ε-martensitic transformation, deformation twinning and dynamic strain aging in Fe-17Mn-0.6C and Fe-17Mn-0.8C TWIP steels. Mater. Sci. Eng. A 2011, 528, 7310–7316. [Google Scholar] [CrossRef]
- Gräsel, O.; Krüger, L.; Frommeyer, G.; Meyer, L.W. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application. Int. J. Plast. 2000, 16, 1391–1409. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Hong, J.-S.; Kang, S.-H.; Lee, Y.-K. The effect of austenite grain size on deformation mechanism of Fe-17Mn steel. Mater. Sci. Eng. A 2021, 809, 140972. [Google Scholar] [CrossRef]
- Kowalska, J.; Ratuszek, W.; Witkowska, M.; Zielińska-Lipiec, A.; Tokarski, T. Microstructure and texture characteristics of the metastable Fe−21Mn−3Si−3Al alloy after cold deformation. J. Alloys Compd. 2015, 643, S39–S45. [Google Scholar] [CrossRef]
- Tavares, S.M.; Gunderov, D.; Stolyarov, V.; Neto, J.M. Phase induced by severe plastic deformation in the AISI 304L stainless steel. Mater. Sci. Eng. A 2003, 358, 32–36. [Google Scholar] [CrossRef]
- Ratuszek, W.; Kowalska, J.; Bunsch, A.; Rumiński, M.; Zielińska-Lipiec, A. Development of deformation texture of austenitic steel wires. Arch. Metall. Mater. 2008, 53, 167–174. [Google Scholar]
- Ryś, J.; Cempura, G. Microstructure and deformation behavior of metastable duplex stainless steel at high rolling reductions. Mater. Sci. Eng. A 2017, 700, 656–666. [Google Scholar] [CrossRef]
- Fujita, H.; Katayama, T. In-situ observation of strain-induced γ→ε→α′ and γ→α′ martensitic transformations in Fe-Cr-Ni alloys. Mater. Trans. JIM 1992, 33, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Souza Filho, I.R.; Zilnyk, K.D.; Sandim, M.J.R.; Bolmaro, R.E.; Sandim, H.R.Z. Strain partitioning and texture evolution during cold rolling of AISI 201 austenitic stainless steel. Mater. Sci. Eng. A 2017, 702, 161–172. [Google Scholar] [CrossRef]
- Yoo, J.D.; Park, K.-T. Microband-induced plasticity in a high Mn-Al-C light steel. Mater. Sci. Eng. A 2008, 496, 417–424. [Google Scholar] [CrossRef]
- Kim, H.; Park, J.; Ha, Y.; Kim, W.; Sohn, S.S.; Kim, H.S.; Lee, B.-J.; Kim, N.J.; Lee, S. Dynamic tension-compression asymmetry of martensitic transformation in austenitic Fe-(0.4,1.0)C-18Mn steels for cryogenic applications. Acta Mater. 2015, 96, 37–46. [Google Scholar] [CrossRef]
- Song, S.W.; Lee, J.H.; Lee, T.; Lee, C.S. Effect of the amount and temperature of prestrain on tensile and low-cycle fatigue properties of Fe-17Mn-0.5C TRIP/TWIP steel. Mater. Sci. Eng. A 2017, 696, 493–502. [Google Scholar] [CrossRef]
- Park, K.-T. Tensile deformation of low-density Fe-Mn-Al-C austenitic steels at ambient temperature. Scripta Mater. 2013, 68, 375–379. [Google Scholar] [CrossRef]
- Alain, S.; Chateau, J.-P.; Bouaziz, O.; Migot, S.; Guelton, N. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys. Mater. Sci. Eng. A 2004, 387–389, 158–162. [Google Scholar] [CrossRef]
- Saeed-Akbari, A.; Imlau, J.; Prahl, U.; Bleck, W. Derivation and variation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese steels. Metall. Mater. Trans. A 2009, 40, 3076–3090. [Google Scholar] [CrossRef]
- Sato, K.; Ichinose, M.; Hirotsu, Y.; Inoue, Y. Effects of deformation induced phase transformation and twinning on the mechanical propertirs of austenitic Fe-Mn-Al alloys. ISIJ Int. 1989, 29, 868–877. [Google Scholar] [CrossRef]
- Bracke, L.; Mertens, G.; Penning, J.; de Cooman, B.C.; Liebeherr, M.; Akdut, N. Influence of phase transformations on the mechanical properties of high-strength austenitic Fe-Mn-Cr steel. Metall. Mater. Trans. A 2006, 37, 307–317. [Google Scholar] [CrossRef]
- Kowalska, J.; Kowalski, M. Development of microstructure and texture after cold-rolling Fe-24Mn-3Al-3Si high-manganese steel. J. Mater. Eng. Perform. 2020, 29, 1495–1501. [Google Scholar] [CrossRef]
- Olson, G.B.; Cohen, M. A general mechanism of martensitic nucleation: Part II. FCC→BCC and other martensitic transformations. Metall. Trans. A 1976, 7, 1905–1914. [Google Scholar]
- Olson, G.; Cohen, M. Kinetics of strain-induced martensitic nucleation. Matall. Trans. A 1975, 6, 791–795. [Google Scholar] [CrossRef]
- Murr, L.; Staudhammer, K.; Hecker, S. Effect of strain state and stain rate on deformation-induced transformation in 304 stainless steel: Part II: Microstructures study. Metall. Trans. A 1982, 13, 627–635. [Google Scholar] [CrossRef]
- Van Tol, R.T.; Kim, J.; Zhao, I.; Sietsma, J.; De Cooman, B. α′-Martensite formation in deep-drawn Mn-based TWIP steel. J. Mater. Sci. 2012, 47, 4845–4850. [Google Scholar] [CrossRef] [Green Version]
- Ding, H.; Ding, H.; Song, D.; Tang, Z.; Yang, P. Strain hardening behavior of TRIP/TWIP steel with 18.8% Mn. Mater. Sci. Eng. A 2011, 528, 868–873. [Google Scholar] [CrossRef]
- Talonen, J.; Hänninen, H. Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steel. Acta Mater. 2007, 55, 6108–6118. [Google Scholar] [CrossRef]
- Kowalska, J.; Ryś, J.; Cios, G.; Bednarczyk, W. The effect of reduced temperatures on microstructure development in tensile tested high-manganese steel. Mater. Sci. Eng. A 2019, 767, 138406. [Google Scholar] [CrossRef]
- Frommeyer, G.; Brüx, U.; Neumann, P. Supra-ductile and high-strength manganese—TRIP/TWIP steels for high energy absorption purposes. ISIJ Int. 2003, 43, 438–446. [Google Scholar] [CrossRef] [Green Version]
- Lu, F.Y.; Hutchinson, B.; Molodov, D.A.; Gottstein, G. Effect of deformation and annealing on the formation of ε-martensite in an Fe–Mn–C alloy. Acta Mater. 2010, 58, 3079–3090. [Google Scholar] [CrossRef]
- Eskandari, M.; Zarei-Hanzaki, A.; Mohtadi-Bonab, M.A.; Onuki, Y.; Basu, R.; Asghari, A.; Szpunar, J.A. Grain-orientation-dependent of γ–ε–α′ transformation and twinning in a super-high-strength, high ductility austenitic Mn-steel. Mater. Sci. Eng. A 2016, 674, 514–528. [Google Scholar] [CrossRef]
- Lu, F.Y.; Yang, P.; Meng, L.; Cui, F.; Ding, H. Influences of thermal martensites and grain orientations on strain-induced martensites in high manganese TRIP/TWIP steels. J. Mater. Sci. Technol. 2011, 27, 257–265. [Google Scholar] [CrossRef]
- Ma, D.-d.; Yang, P.; Gu, X.-F.; Onuki, Y.; Sato, S. In situ neutron diffraction investigation on the martensite transformation, texture evolution and martensite reversion in high manganese TRIP steel. Mater. Charact. 2020, 163, 110244. [Google Scholar] [CrossRef]
- Ma, D.-D.; Yang, P.; Gu, X.-F.; Cui, F.-E. Influences of initial microstructures on martensitic transformation and textures during cold rolling and tensile mechanical properties in high manganese TRIP steel. Mater. Sci. Eng. A 2022, 829, 142147. [Google Scholar] [CrossRef]
- Hamada, A.S.; Karjalainen, L.P.; Somani, M.C. The influence of aluminum on hot deformation behavior and tensile properties of high-Mn TWIP steels. Mater. Sci. Eng. A 2007, 467, 114–124. [Google Scholar] [CrossRef]
- Choi, H.C.; Ha, T.K.; Shin, H.C.; Chang, Y.W. The formation kinetics of deformation twin and deformation induced ε-martensite in an austenitic Fe-C-Mn steel. Scripta Mater. 1999, 40, 1171–1177. [Google Scholar] [CrossRef]
- Huang, B.X.; Wang, X.D.; Rong, Y.H.; Wang, L.; Jin, L. Mechanical behavior and martensitic transformation of an Fe-Mn- Si-Al-Nb alloy. Mater. Sci. Eng. A 2006, 438–440, 306–311. [Google Scholar] [CrossRef]
- Idrissi, H.; Ryelandt, L.; Veron, M.; Schryvers, D.; Jacques, P.J. Is there a relationship between the stacking fault character and the activated mode of plasticity of Fe–Mn-based austenitic steels? Scripta Mater. 2009, 60, 941–944. [Google Scholar] [CrossRef]
- Galindo-Nava, E.I.; Rivera-Díaz-del-Castillo, P.E.J. Understanding martensite and twin formation in austenitic steels: A model describing TRIP and TWIP effects. Acta Mater. 2017, 128, 120–134. [Google Scholar] [CrossRef] [Green Version]
- Ueji, R.; Takagi, Y.; Tsuchida, N.; Shinagawa, K.; Tanaka, Y.; Mizuguchi, T. Crystallographic orientation dependence of ε martensite transformation during tensile deformation of polycrystalline 30% Mn austenitic steel. Mater. Sci. Eng. A 2013, 576, 14–20. [Google Scholar] [CrossRef]
- Weina, Z.; Zhenyun, L.; Zhibo, Z.; Guodong, W. The crystallographic mechanism for deformation induced martensitic transformation observed by high resolution transmission electron microscope. Mater. Lett. 2013, 91, 158–160. [Google Scholar] [CrossRef]
- Kowalska, J.; Ratuszek, W.; Witkowska, M.; Zielińska-Lipiec, A.; Kowalski, M. Microstructure and texture evolution during cold-rolling in the Fe−23Mn−3Si−3Al alloy. Arch. Metall. Mater. 2015, 60, 1789–1794. [Google Scholar] [CrossRef]
- Xie, P.; Shen, S.; Wu, C.; Li, J.; Chen, J. Unusual relationship between impact toughness and grain size in a high-manganese steel. J. Mater. Sci. Technol. 2021, 89, 122–132. [Google Scholar] [CrossRef]
- Askeland, D.R. The Science and Engineering of Materials; PWS-KENT Publishing Company: Belmont, NC, USA, 1984; p. 295. [Google Scholar]
- Brooks, J.W.; Loretto, M.H.; Smallman, R.E. In situ observations of the formation of martensite in stainless steel. Acta Metall. 1979, 27, 1829–1838. [Google Scholar] [CrossRef]
- Chen, X.; Li, L.; Zhao, Y.; Misra, R.D.K. Influence of manganese content on ε-/α′-martensitic transformation and tensile properties of low-C high-Mn TRIP steels. Mater. Des. 2018, 142, 190–202. [Google Scholar] [CrossRef]
- Pramanik, S.; Gazder, A.A.; Saleh, A.A.; Pereloma, E.V. Nucleation, coarsening and deformation accommodation mechanisms of ε-martensite in a high manganese steel. Mater. Sci. Eng. A 2018, 731, 506–519. [Google Scholar] [CrossRef]
- Liang, X.; Wang, X.; Zurob, H.S. Microstructural characterization of transformable Fe-Mn alloys at different length scales. Mater. Charact. 2009, 60, 1224–1231. [Google Scholar] [CrossRef]
- Mangonon, L.; Thomas, G. The martensite phase in 304 stainless steel. Metall. Trans. 1970, 1, 1577–1586. [Google Scholar] [CrossRef]
- Padilha, A.F.; Plaut, R.L.; Rios, P.R. Annealing of cold-worked austenitic stainless steel. ISIJ Int. 2003, 43, 135–143. [Google Scholar] [CrossRef]
- Fujita, H.; Ueda, S. Stacking faults and F.C.C. (γ)→H.C.P. (ε) transformation in 18/8-type stainless steel. Acta Metall. 1972, 20, 759–767. [Google Scholar] [CrossRef]
- Nambu, S.; Shibuta, N.; Ojima, M.; Inoue, J.; Koseki, T.; Bhadeshia, H.K.D.H. In situ observations and crystallographic analysis of martensitic transformation in steel. Acta Mater. 2013, 61, 4831–4839. [Google Scholar] [CrossRef]
- Bouaziz, O.; Allain, S.; Scott, C.P.; Cugy, P.; Barbier, D. High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships. Curr. Opin. Solid State Mater. Sci. 2011, 15, 141–168. [Google Scholar] [CrossRef]
- Fang, X.-H.; Yang, P.; Lu, F.-Y.; Meng, L. Dependence of deformation twinning on grain orientation and texture evolution of high manganese TWIP steels at different deformation temperatures. J. Iron Steel Res. Int. 2011, 18, 46–52. [Google Scholar] [CrossRef]
Content of Elements, wt.% | ||||||
---|---|---|---|---|---|---|
Mn | Al | Si | C | P | S | Fe |
21.2 | 2.99 | 2.73 | 0.02 | 0.005 | 0.014 | balance |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalska, J.; Ryś, J.; Cempura, G. Complex Structural Effects in Deformed High-Manganese Steel. Materials 2021, 14, 6935. https://doi.org/10.3390/ma14226935
Kowalska J, Ryś J, Cempura G. Complex Structural Effects in Deformed High-Manganese Steel. Materials. 2021; 14(22):6935. https://doi.org/10.3390/ma14226935
Chicago/Turabian StyleKowalska, Joanna, Janusz Ryś, and Grzegorz Cempura. 2021. "Complex Structural Effects in Deformed High-Manganese Steel" Materials 14, no. 22: 6935. https://doi.org/10.3390/ma14226935
APA StyleKowalska, J., Ryś, J., & Cempura, G. (2021). Complex Structural Effects in Deformed High-Manganese Steel. Materials, 14(22), 6935. https://doi.org/10.3390/ma14226935