Characterization of Silver Nanowire Layers in the Terahertz Frequency Range
Abstract
:1. Introduction
2. Experimental
2.1. Sample Preparation
2.2. Sample Characterization
2.3. Terahertz Time-Domain Spectroscopy
2.4. Terahertz Frequency-Domain Spectroscopy
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goliya, Y.; Rivadeneyra, A.; Salmeron, J.F.; Albrecht, A.; Mock, J.; Haider, M.; Russer, J.; Cruz, B.; Eschlwech, P.; Biebl, E.; et al. Next Generation Antennas Based on Screen-Printed and Transparent Silver Nanowire Films. Adv. Opt. Mater. 2019, 7, 1900995. [Google Scholar] [CrossRef]
- Hosako, I.; Sekine, N.; Patrashin, M.; Saito, S.; Fukunaga, K.; Kasai, Y.; Baron, P.; Seta, T.; Mendrok, J.; Ochiai, S.; et al. At the Dawn of a New Era in Terahertz Technology. Proc. IEEE 2007, 95, 1611–1623. [Google Scholar] [CrossRef]
- Pawar, A.Y.; Sonawane, D.D.; Erande, K.B.; Derle, D.V. Terahertz Technology and Its Applications. Drug Invent. Today 2013, 5, 157–163. [Google Scholar] [CrossRef]
- Fukunaga, K.; Picollo, M. Terahertz Spectroscopy Applied to the Analysis of Artists’ Materials. Appl. Phys. Mater. Sci. Process. 2010, 100, 591–597. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Jornet, J.M.; Han, C. Terahertz Band: Next Frontier for Wireless Communications. Phys. Commun. 2014, 12, 16–32. [Google Scholar] [CrossRef]
- Borovkova, M.; Serebriakova, M.; Fedorov, V.; Sedykh, E.; Vaks, V.; Lichutin, A.; Salnikova, A.; Khodzitsky, M. Investigation of Terahertz Radiation Influence on Rat Glial Cells. Biomed. Opt. Express 2017, 8, 273–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tenggara, A.P.; Park, S.J.; Yudistira, H.T.; Ahn, Y.H.; Byun, D. Fabrication of Terahertz Metamaterials Using Electrohydrodynamic Jet Printing for Sensitive Detection of Yeast. J. Micromechanics Microengineering 2017, 27, 035009. [Google Scholar] [CrossRef]
- Smirnov, S.; Anoshkin, I.V.; Demchenko, P.; Gomon, D.; Lioubtchenko, D.V.; Khodzitsky, M.; Oberhammer, J. Optically Controlled Dielectric Properties of Single-Walled Carbon Nanotubes for Terahertz Wave Applications. Nanoscale 2018, 10, 12291–12296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Son, J.H.; Oh, S.J.; Cheon, H. Potential Clinical Applications of Terahertz Radiation. J. Appl. Phys. 2019, 125, 190901. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, L.S.; Tang, M.; Mao, J. Design of a Beam Reconfigurable THz Antenna With Graphene-Based Switchable High-Impedance Surface. IEEE Trans. Nanotechnol. 2012, 11, 836–842. [Google Scholar] [CrossRef]
- Llatser, I.; Kremers, C.; Cabellos-Aparicio, A.; Jornet, J.M.; Alarcón, E.; Chigrin, D.N. Graphene-Based Nano-Patch Antenna for Terahertz Radiation. Photonics Nanostructures—Fundam. Appl. 2012, 10, 353–358. [Google Scholar] [CrossRef] [Green Version]
- Tamagnone, M.; Gómez-Díaz, J.S.; Mosig, J.R.; Perruisseau-Carrier, J. Reconfigurable Terahertz Plasmonic Antenna Concept Using a Graphene Stack. Appl. Phys. Lett. 2012, 101, 214102. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Lavado, A.; Preu, S.; García-Muñoz, L.E.; Generalov, A.; Montero-de-Paz, J.; Döhler, G.; Lioubtchenko, D.; Méndez-Aller, M.; Sedlmeir, F.; Schneidereit, M.; et al. Dielectric Rod Waveguide Antenna as THz Emitter for Photomixing Devices. IEEE Trans. Antennas Propag. 2015, 63, 882–890. [Google Scholar] [CrossRef]
- Komoda, N.; Nogi, M.; Suganuma, K.; Kohno, K.; Akiyama, Y.; Otsuka, K. Printed Silver Nanowire Antennas with Low Signal Loss at High-Frequency Radio. Nanoscale 2012, 4, 3148–3153. [Google Scholar] [CrossRef]
- Rai, T.; Dantes, P.; Bahreyni, B.; Kim, W.S. A Stretchable RF Antenna With Silver Nanowires. IEEE Electron Device Lett. 2013, 34, 544–546. [Google Scholar] [CrossRef]
- Song, L.; Myers, A.C.; Adams, J.J.; Zhu, Y. Stretchable and Reversibly Deformable Radio Frequency Antennas Based on Silver Nanowires. ACS Appl. Mater. Interfaces 2014, 6, 4248–4253. [Google Scholar] [CrossRef]
- Salmerón, J.F.; Molina-Lopez, F.; Briand, D.; Ruan, J.J.; Rivadeneyra, A.; Carvajal, M.A.; Capitán-Vallvey, L.F.; de Rooij, N.F.; Palma, A.J. Properties and Printability of Inkjet and Screen-Printed Silver Patterns for RFID Antennas. J. Electron. Mater. 2014, 43, 604–617. [Google Scholar] [CrossRef]
- Kim, B.S.; Shin, K.Y.; Pyo, J.B.; Lee, J.; Son, J.G.; Lee, S.S.; Park, J.H. Reversibly Stretchable, Optically Transparent Radio-Frequency Antennas Based on Wavy Ag Nanowire Networks. ACS Appl. Mater. Interfaces 2016, 8, 2582–2590. [Google Scholar] [CrossRef] [PubMed]
- Sannicolo, T.; Lagrange, M.; Cabos, A.; Celle, C.; Simonato, J.P.; Bellet, D. Metallic Nanowire-Based Transparent Electrodes for Next Generation Flexible Devices: A Review. Small 2016, 12, 6052–6075. [Google Scholar] [CrossRef]
- Lee, S.Y.; Choo, M.; Jung, S.; Hong, W. Optically Transparent Nano-Patterned Antennas: A Review and Future Directions. Appl. Sci. 2018, 8, 901. [Google Scholar] [CrossRef] [Green Version]
- Parente, M.; van Helvert, M.; Hamans, R.F.; Verbroekken, R.; Sinha, R.; Bieberle-Hütter, A.; Baldi, A. Simple and Fast High-Yield Synthesis of Silver Nanowires. Nano Lett. 2020, 20, 5759–5764. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.T.; Jun, S.W.; Cha, S.H.; Park, J.Y.; Lee, S.; Shin, G.A.; Ahn, Y.H. Enhanced Sensitivity in THz Plasmonic Sensors with Silver Nanowires. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Nirmalraj, P.N.; Bellew, A.T.; Bell, A.P.; Fairfield, J.A.; McCarthy, E.K.; O’Kelly, C.; Pereira, L.F.C.; Sorel, S.; Morosan, D.; Coleman, J.N.; et al. Manipulating Connectivity and Electrical Conductivity in Metallic Nanowire Networks. Nano Lett. 2012, 12, 5966–5971. [Google Scholar] [CrossRef]
- Pyo, J.B.; Kim, B.S.; Park, H.; Kim, T.A.; Koo, C.M.; Lee, J.; Son, J.G.; Lee, S.S.; Park, J.H. Floating Compression of Ag Nanowire Networks for Effective Strain Release of Stretchable Transparent Electrodes. Nanoscale 2015, 7, 16434–16441. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.T.; Park, S.J.; Park, J.y.; Lee, S.; Ahn, Y.H. Terahertz Slot Antenna Devices Fabricated on Silver Nanowire Network Films. Opt. Mater. Express 2017, 7, 1679–1685. [Google Scholar] [CrossRef]
- Lefèvre, V. Nanowires: Properties, Synthesis, and Applications; Nova Science Publishers: New York, NY, USA, 2012. [Google Scholar]
- Anoshkin, I.V.; Nefedova, I.I.; Nefedov, I.S.; Lioubtchenko, D.V.; Nasibulin, A.G.; Räisänen, A.V. Resistivity and Optical Transmittance Dependence on Length and Diameter of Nanowires in Silver Nanowire Layers in Application to Transparent Conductive Coatings. Micro Nano Lett. 2016, 11, 343–347. [Google Scholar] [CrossRef]
- Ye, S.; Rathmell, A.R.; Chen, Z.; Stewart, I.E.; Wiley, B.J. Metal Nanowire Networks: The Next Generation of Transparent Conductors. Adv. Mater. 2014, 26, 6670–6687. [Google Scholar] [CrossRef]
- Noh, Y.J.; Kim, S.S.; Kim, T.W.; Na, S.I. Cost-Effective ITO-Free Organic Solar Cells with Silver Nanowire–PEDOT:PSS Composite Electrodes via a One-Step Spray Deposition Method. Sol. Energy Mater. Sol. Cells 2014, 120, 226–230. [Google Scholar] [CrossRef]
- Hoof, N.; Parente, M.; Baldi, A.; Rivas, J.G. Terahertz Time-Domain Spectroscopy and Near-Field Microscopy of Transparent Silver Nanowire Networks. Adv. Opt. Mater. 2020, 8, 1900790. [Google Scholar] [CrossRef]
- Langley, D.; Giusti, G.; Mayousse, C.; Celle, C.; Bellet, D.; Simonato, J.P. Flexible Transparent Conductive Materials Based on Silver Nanowire Networks: A Review. Nanotechnology 2013, 24, 452001. [Google Scholar] [CrossRef]
- Xu, W.; Xu, Q.; Huang, Q.; Tan, R.; Shen, W.; Song, W. Fabrication of Flexible Transparent Conductive Films with Silver Nanowire by Vacuum Filtration and PET Mold Transfer. J. Mater. Sci. Technol. 2016, 32, 158–161. [Google Scholar] [CrossRef]
- Huang, Q.; Al-Milaji, K.N.; Zhao, H. Inkjet Printing of Silver Nanowires for Stretchable Heaters. ACS Appl. Nano Mater. 2018, 1, 4528–4536. [Google Scholar] [CrossRef]
- Cui, Z.; Han, Y.; Huang, Q.; Dong, J.; Zhu, Y. Electrohydrodynamic Printing of Silver Nanowires for Flexible and Stretchable Electronics. Nanoscale 2018, 10, 6806–6811. [Google Scholar] [CrossRef]
- Li, W.; Yang, S.; Shamim, A. Screen Printing of Silver Nanowires: Balancing Conductivity with Transparency While Maintaining Flexibility and Stretchability. npj Flex. Electron. 2019, 3, 1–8. [Google Scholar] [CrossRef]
- Kim, J.; Maeng, I.; Jung, J.; Song, H.; Son, J.H.; Kim, K.; Lee, J.; Kim, C.H.; Chae, G.; Jun, M.; et al. Terahertz Time-Domain Measurement of Non-Drude Conductivity in Silver Nanowire Thin Films for Transparent Electrode Applications. Appl. Phys. Lett. 2013, 102, 011109. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.C.; Chou, K.S. Tailoring of Silver Wires and Their Performance as Transparent Conductive Coatings. Nanotechnology 2010, 21, 215707. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Kim, H.S.; Lee, J.Y.; Peumans, P.; Cui, Y. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes. ACS Nano 2010, 4, 2955–2963. [Google Scholar] [CrossRef]
- Liu, C.H.; Yu, X. Silver Nanowire-Based Transparent, Flexible, and Conductive Thin Film. Nanoscale Res. Lett. 2011, 6, 75. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; He, L.; Deng, Q.; Liu, Q.; Li, L.; Wang, W.; Xin, Z.; Liu, R. Synthesis and Applications of Silver Nanowires for Transparent Conductive Films. Micromachines 2019, 10, 330. [Google Scholar] [CrossRef] [Green Version]
- Räisänen, A.V.; Ala-Laurinaho, J.; Asadchy, V.; Diaz-Rubio, A.; Khanal, S.; Semkin, V.; Tretyakov, S.; Wang, X.; Zheng, J.; Alastalo, A.; et al. Suitability of Roll-to-Roll Reverse Offset Printing for Mass Production of Millimeter-Wave Antennas: Progress Report. In Proceedings of the 2016 Loughborough Antennas Propagation Conference (LAPC), Loughborough, UK, 14–15 November 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Nicolson, A.M.; Ross, G.F. Measurement of the Intrinsic Properties of Materials by Time-Domain Techniques. IEEE Trans. Instrum. Meas. 1970, 19, 377–382. [Google Scholar] [CrossRef] [Green Version]
- Dudorov, S.; Lioubtchenko, D.; Mallat, J.; Raisanen, A. Differential Open Resonator Method for Permittivity Measurements of Thin Dielectric Film on Substrate. IEEE Trans. Instrum. Meas. 2005, 54, 1916–1920. [Google Scholar] [CrossRef]
- Brown, E.R.; Smith, F.W.; McIntosh, K.A. Coherent Millimeter-wave Generation by Heterodyne Conversion in Low-temperature-grown GaAs Photoconductors. J. Appl. Phys. 1993, 73, 1480–1484. [Google Scholar] [CrossRef] [Green Version]
- Deninger, A.J.; Roggenbuck, A.; Schindler, S.; Preu, S. 2.75 THz Tuning with a Triple-DFB Laser System at 1550 Nm and InGaAs Photomixers. J. Infrared Millim. Terahertz Waves 2015, 36, 269–277. [Google Scholar] [CrossRef] [Green Version]
- Tinkham, M. Energy Gap Interpretation of Experiments on Infrared Transmission through Superconducting Films. Phys. Rev. 1956, 104, 845–846. [Google Scholar] [CrossRef]
- Smith, N. Classical Generalization of the Drude Formula for the Optical Conductivity. Phys. Rev. B 2001, 64, 155106. [Google Scholar] [CrossRef]
- Joyce, H.J.; Boland, J.L.; Davies, C.L.; Baig, S.A.; Johnston, M.B. A Review of the Electrical Properties of Semiconductor Nanowires: Insights Gained from Terahertz Conductivity Spectroscopy. Semicond. Sci. Technol. 2016, 31, 103003. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.J.; Chang, C.Y.; Lai, Y.C.; Yu, P.C.; Ahn, H. Realization of Metal—Insulator Transition and Oxidation in Silver Nanowire Percolating Networks by Terahertz Reflection Spectroscopy. ACS Appl. Mater. Interfaces 2014, 6, 630–635. [Google Scholar] [CrossRef]
- Babiskin, J.; Anderson, J.R. American Institute of Physics Handbook; McGraw-Hill: New York, NY, USA, 1972. [Google Scholar]
Sample | Diameter (nm) | Length (µm) |
---|---|---|
A | ||
B | ||
C |
Sample | h (nm) | f | (Hz) | |
---|---|---|---|---|
C8 | 1200 | 0.35 | 0 | |
C7 | 800 | 0.2 | 0 | |
C6 | 570 | 0.1 | 0 | |
C5 | 275 | 0.08 | 0 | |
C4 | 250 | 0.085 | −0.983 | |
C3 | 180 | 0.08 | −0.997 | |
C2 | 80 | 0.1 | −1 | |
C1 | 80 | 0.11 | −1 |
Nanowire | d | l | h | f | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Ref. | Deposition | (nm) | (µm) | (nm) | (%) | (THz) | (S/cm) | (THz) | (fs) | |
[50] | Bulk Ag | N.A. | N.A. | N.A. | 100 | 5.4–600 | 0 | 2181 | 230 | |
[36] | Bar coating | Monolayer | 1.5–14.8 | 0.3–1.5 | 0–50 | −0.99 | 174–187 | 25–28 | ||
[49] | Spin coating | 70–100 | 10 | — | 8–30 | 0.4–2 | 300–1600 | −0.9–0 | 300–1500 | 20–80 |
[30] | Spray coating | 50 | 10 | 120–240 | — | 0.2–2 | 4–830 | — | — | — |
Here | Vacuum filter. | 80–1200 | 8–35 | 0.2–1.3 | 4–230 | −1–0 | 590–2100 | 0.4–1.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przewłoka, A.; Smirnov, S.; Nefedova, I.; Krajewska, A.; Nefedov, I.S.; Demchenko, P.S.; Zykov, D.V.; Chebotarev, V.S.; But, D.B.; Stelmaszczyk, K.; et al. Characterization of Silver Nanowire Layers in the Terahertz Frequency Range. Materials 2021, 14, 7399. https://doi.org/10.3390/ma14237399
Przewłoka A, Smirnov S, Nefedova I, Krajewska A, Nefedov IS, Demchenko PS, Zykov DV, Chebotarev VS, But DB, Stelmaszczyk K, et al. Characterization of Silver Nanowire Layers in the Terahertz Frequency Range. Materials. 2021; 14(23):7399. https://doi.org/10.3390/ma14237399
Chicago/Turabian StylePrzewłoka, Aleksandra, Serguei Smirnov, Irina Nefedova, Aleksandra Krajewska, Igor S. Nefedov, Petr S. Demchenko, Dmitry V. Zykov, Valentin S. Chebotarev, Dmytro B. But, Kamil Stelmaszczyk, and et al. 2021. "Characterization of Silver Nanowire Layers in the Terahertz Frequency Range" Materials 14, no. 23: 7399. https://doi.org/10.3390/ma14237399
APA StylePrzewłoka, A., Smirnov, S., Nefedova, I., Krajewska, A., Nefedov, I. S., Demchenko, P. S., Zykov, D. V., Chebotarev, V. S., But, D. B., Stelmaszczyk, K., Dub, M., Zasada, D., Lisauskas, A., Oberhammer, J., Khodzitsky, M. K., Knap, W., & Lioubtchenko, D. (2021). Characterization of Silver Nanowire Layers in the Terahertz Frequency Range. Materials, 14(23), 7399. https://doi.org/10.3390/ma14237399