Reactivity and Corrosion Behaviors of Ti6Al4V Alloy Implant Biomaterial under Metabolic Perturbation Conditions in Physiological Solutions
Abstract
:1. Introduction
2. Materials and Methods
- At t1 = 48 h, OCP1 and EIS1 were measured;
- At t2 = 120 h, OCP2 and EIS2 were measured;
- At t3 = 144 h, OCP3 and EIS3 were measured;
- At t4 = 168 h, OCP4 and EIS4 were measured.
3. Results and Discussions
3.1. Open Circuit Potential Evolution during Immersion Time (OCP)
3.2. Electrochemical Impedance Spectroscopy
- -
- Rs is the solution resistance;
- -
- R1 is the resistance of thin passive oxide layer formed on titanium alloy, which is in direct contact with the tested biological solution;
- -
- CPE1 is the constant phase element corresponding to this thin passive oxide film;
- -
- R2 is the higher resistance of bulk alloy implant, which is in contact with the tested solution through the oxide film;
- -
- CPE2 is the constant phase element corresponding to the interface of bulk titanium alloy and the biological solution through the passive oxide film. The fitted parameter values for each system of titanium alloy and the tested biological solutions are shown in Table 2. The similar equivalent circuit was found by other authors [47] when studying the corrosion resistance of Ti6Al7Nb and Ti6Al4V ELI in an SBF solution.
3.3. SEM–EDX Analysis before and after Corrosion
3.4. X-ray Diffraction Patterns of the Ti6Al4V before and after Immersion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Velten, D.; Biehl, V.; Aubertin, F.; Valeske, B.; Possart, W.; Breme, J. Preparation of TiO2 layers on cp–Ti and Ti6Al4V by thermal and anodic oxidation and by Sol–Gel coating techniques and their characterization. J. Biomed. Mater. Res. 2002, 59, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, Y. Effect of friction on anodic polarization properties of metallic biomaterials. Biomaterials 2002, 23, 2071–2077. [Google Scholar] [CrossRef]
- Pan, J.; Thierry, D.; Leygraf, C. Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochim. Acta 1996, 41, 1143–1153. [Google Scholar] [CrossRef]
- Gonzalez, J.E.G.; Mirza-Rosca, J.C. Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications. J. Electroanal. Chem. 1999, 471, 109–115. [Google Scholar] [CrossRef]
- Demetrescu, I.; Pirvu, C.; Mitran, V. Effect of nano-topographical features of Ti/TiO2 electrode surface on cell response and electrochemical stability in artificial saliva. Bioelectrochemistry 2010, 79, 122–129. [Google Scholar] [CrossRef]
- Souza, J.C.M.; Apaza-Bedoya, K.; Benfatti, C.A.M.; Silva, F.S.; Henriques, B.A. Comprehensive review on the corrosion pathways of Titanium dental implants and their biological adverse effects. Metals 2020, 10, 1272. [Google Scholar] [CrossRef]
- Rodrigues, D.C.; Valderrama, P.; Wilson, T.G.; Palmer, K.; Thomas, A.; Sridhar, S.; Adapalli, A.; Burbano, M.; Wadhwani, C. Titanium corrosion mechanisms in the oral environment: A retrieval study. Materials 2013, 6, 5258–5274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochsenbein, A.; Chai, F.; Winter, S.; Traisnel, M.; Breme, J.; Hildebrand, H.F. Osteoblast responses to different oxide coatings produced by the Sol-Gel process on Titanium substrates. Acta Biomater. 2008, 4, 1506–1517. [Google Scholar] [CrossRef] [PubMed]
- Nikolopoulou, F. Saliva and dental implants. Implant Dent. 2006, 15, 372–376. [Google Scholar] [CrossRef]
- Gittens, R.A.; Olivares-Navarrete, R.; Tannenbaum, R.; Boyan, B.D.; Schwartz, Z. Electrical implications of corrosion for osseointegration of titanium implants. J. Dent. Res. 2011, 90, 1389–1397. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Ruiz, R.; Romanos, G. Potential causes of Titanium particle and ion release in implant dentistry: A systematic Review. Int. J. Mol. Sci. 2018, 19, 3585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muresan, A.C.; Buruiana, L.D.; Carp, G.B.; Berbece, S.; Trus, C. Evaluation of corrosion resistance in 3.5% NaCl solution of hybrid coatings obtained from plastics materials. Mater. Plast. 2021, 58, 201–209. [Google Scholar] [CrossRef]
- Souza, J.C.M.; Henriques, M.; Oliveira, R.; Teughels, W.; Celis, J.P.; Rocha, L.A. Do oral biofilms influence the wear and corrosion behavior of titanium? Biofouling 2010, 26, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Addison, O.; Yu, F.; Troconis, B.C.R.; Scully, J.R.; Davenport, A.J. Time-dependent enhanced corrosion of Ti6Al4V in the presence of H2O2 and albumin. Sci. Rep. 2018, 8, 3185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benea, L.; Danaila, E.; Ponthiaux, P. Effect of titania anodic formation and hydroxyapatite electrodeposition on electrochemical behaviour of Ti–6Al–4V alloy under fretting conditions for biomedical applications. Corros. Sci. 2015, 91, 262–271. [Google Scholar] [CrossRef]
- Benea, L.; Mardare-Danaila, E.; Celis, J.P. Increasing the tribological performances of Ti–6Al–4V alloy by forming a thin nanoporous TiO2 layer and hydroxyapatite electrodeposition under lubricated conditions. Tribol. Int. 2014, 78, 168–175. [Google Scholar] [CrossRef]
- Ravoiu, A.; Simionescu, N.; Benea, L. Influence of different concentration of hydrogen peroxide on the corrosion behavior of Ti-6Al-4V alloy immersed in physiological solution. IOP Conf. Ser. Mater. Sci. Eng. 2019, 572, 012006. [Google Scholar] [CrossRef]
- Nikoomanzari, E.; Fattah-Alhosseini, A.; Reza, M.; Alamoti, P.; Keshavarz, M.K. Effect of ZrO2 nanoparticles addition to PEO coatings on Ti–6Al–4V substrate: Microstructural analysis, Corrosion behavior and antibacterial effect of coatings in Hank’s Physiological solution. Ceram. Int. 2020, 46, 13114–13124. [Google Scholar] [CrossRef]
- Tang, H.; Wu, T.; Wang, H.; Jian, X.; Wu, Y. Corrosion behavior of HA containing ceramic coated Magnesium alloy in Hank’s solution. J. Alloys Compd. 2017, 698, 643–653. [Google Scholar] [CrossRef]
- Ravoiu, A.; Benea, L.; Chiriac, A. Metabolic albumin and its effect on electrochemical behavior of Titanium implant alloy. IOP Conf. Ser. Mater. Sci. Eng. 2018, 374, 012077. [Google Scholar] [CrossRef]
- Ferreira, D.F.; Almeida, S.M.A.; Soares, R.B.; Juliani, L.; Bracarense, A.Q.; Lins, V.F.C.; Junqueira, R.M.R. Synergism between mechanical wear and corrosion on tribocorrosion of a titanium alloy in a ringer solution. J. Mater. Res. Technol. 2019, 8, 1593–1600. [Google Scholar] [CrossRef]
- Chen, X.; Shah, K.; Dong, S.; Peterson, L.; Callagon La Plante, E.; Sant, G. Elucidating the corrosion-related degradation mechanisms of a Ti-6Al-4V dental implant. Dent. Mater. 2020, 36, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Benea, L.; Mardare-Danaila, E.; Mardare, M.; Celis, J.P. Preparation of titanium oxide and hydroxyapatite on Ti–6Al–4V alloy surface and electrochemical behaviour in bio-simulated fluid solution. Corros. Sci. 2014, 80, 331–338. [Google Scholar] [CrossRef]
- Dragus, L.; Benea, L.; Simionescu, N.; Ravoiu, A.; Neaga, V. Effect of the inflammatory conditions and albumin presence on the corrosion behavior of grade 5 titanium alloy in saliva biological solution. IOP Conf. Ser. Mater. Sci. Eng. 2019, 572, 012005. [Google Scholar] [CrossRef]
- Mabilleau, G.; Bourdon, S.; Joly-Guillou, M.L.; Filmon, R.; Baslé, M.F.; Chappard, D. Influence of fluoride, hydrogen peroxide and lactic acid on the corrosion resistance of commercially pure titanium. Acta Biomater. 2006, 2, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Barjaktarević, D.R.; Djokić, V.R.; Bajat, J.B.; Dimić, I.D.; Cvijović-Alagić, I.L.; Rakin, M.P. The influence of the surface nanostructured modification on the corrosion resistance of the ultrafine-grained Ti–13Nb–13Zr alloy in artificial saliva. Theor. Appl. Fract. Mech. 2019, 103, 102307. [Google Scholar] [CrossRef]
- Qu, Q.; Wang, L.; Chen, Y.; Li, L.; He, Y.; Ding, Z. Corrosion behavior of titanium in artificial saliva by lactic acid. Materials 2014, 7, 5528–5542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, J.; Luo, H.; Qi, Y.; Xu, P.; Ma, S.; Zhang, Z.; Ma, Y. The effect of cryogenic burnishing on the formation mechanism of corrosion product film of Ti-6Al-4V titanium alloy in 0.9% NaCl solution. Surf. Coat. Technol. 2018, 345, 123–131. [Google Scholar] [CrossRef]
- Banu, A.; Marcu, M.; Juganaru, C.; Osiceanu, P.; Anastasescu, M.; Capra, L. Corrosion behavior of CoCrMoW cast alloy in lactic acid environment for surgical applications. Arab. J. Chem. 2017, 12, 2007–2016. [Google Scholar] [CrossRef]
- Bai, Y.; Gai, X.; Li, S.; Zhang, L.C.; Liu, Y.; Hao, Y.; Zhang, X.; Yang, R.; Gao, Y. Improved corrosion behaviour of electron beam melted Ti-6Al–4V alloy in phosphate buffered saline. Corros. Sci. 2017, 123, 289–296. [Google Scholar] [CrossRef]
- Benea, L.; Simionescu, N. Evaluation of corrosion resistance of implant-use Ti6Al4V alloy in Hank biological solution in the presence of microorganism’s metabolic product lactic acid. Multimed. Syst. 2020, 43, 31–38. [Google Scholar] [CrossRef]
- Souza, J.C.M.; Ponthiaux, P.; Henriques, M.; Oliveira, R.; Teughels, W.; Celis, J.P.; Rocha, L.A. Corrosion behaviour of titanium in the presence of streptococcus mutans. J. Dent. 2013, 41, 528–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, F.; Addison, O.; Davenport, A.J. A synergistic effect of albumin and H2O2 accelerates corrosion of Ti6Al4V. Acta Biomater. 2015, 26, 355–365. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Zuo, Y.; Zhao, J.; Xiong, J.; Tang, Y. A study of the self-sealing process of anodic films on aluminum by EIS. Surf. Coat. Technol. 2006, 200, 6846–6853. [Google Scholar] [CrossRef]
- Sung, T.; Wang, M. A comparative study on titania layers formed on Ti, Ti-6Al-4V and NiTi shape memory alloy through a low temperature oxidation process. Surf. Coat. Technol. 2010, 205, 92–101. [Google Scholar]
- Sisman, N.; Poli, D.; Zappa, E. Comini, Synthesis of nanoporous TiO2 with the use of diluted hydrogen peroxide solution and its application in gas sensing. Coatings 2019, 9, 681. [Google Scholar] [CrossRef] [Green Version]
- Yahia, S.A.A.; Hamadou, L.; Kadri, A.; Benbrahim, N.; Sutter, E.M.M. Effect of anodizing potential on the formation and EIS characteristics of TiO2 nanotube arrays. J. Electrochem. Soc. 2012, 154, K83–K92. [Google Scholar] [CrossRef]
- Wang, S.; Li, Z.; Jiang, Q.; Ma, Z.; Liu, Q.; Wu, Z. Oxygen plasma modified separator for lithium sulfur battery. RSC Adv. 2015, 5, 79473–79478. [Google Scholar]
- Benea, L.; Danaila, E. Nucleation and growth mechanism of Ni/TiO2 nanoparticles electro-codeposition. J. Electrochem. Soc. 2016, 163, D655–D662. [Google Scholar] [CrossRef]
- Benea, L.; Pavlov, A.I. Ni-TiO2 nanocomposite coatings as cathode material for hydrogen evolution reaction. Optoelectron. Adv. Mater. Rapid Commun. 2013, 7, 895–899. [Google Scholar]
- Huang, Y.; Shih, H.; Huang, H.; Daugherty, J.; Wu, S.; Ramanathan, S.; Chang, C.; Mansfeld, F. Evaluation of the corrosion resistance of anodized aluminum 6061 using electrochemical impedance spectroscopy (EIS). Corros. Sci. 2008, 50, 3569–3575. [Google Scholar] [CrossRef]
- Gonzalez, J.A.; Lopez, V.; Bautista, A.; Otero, E. Characterization of porous aluminium oxide films from A.C. impedance measurements. J. Appl. Electrochem. 1999, 29, 229–238. [Google Scholar] [CrossRef]
- Dumitrascu, V.M.; Benea, L. Improving the corrosion behaviour of 6061 aluminum alloy by controlled anodic formed oxide layer. Rev. Chim. 2017, 68, 77–80. [Google Scholar] [CrossRef]
- Jorcin, J.B.; Orazem, M.E.; Pebere, N.; Tribollet, B. CPE analysis by local electrochemical impedance spectroscopy. Electrochim. Acta 2006, 51, 1473–1479. [Google Scholar] [CrossRef]
- Gharbi, O.; Tran, M.T.T.; Tribollet, B.; Turmine, M.; Vivier, V. Revisiting cyclic voltammetry and electrochemical impedance spectroscopy analysis for capacitance measurements. Electrochim. Acta 2020, 343, 136109. [Google Scholar] [CrossRef]
- Assis, S.L.; Costa, I. The effect of hydrogen peroxide on the electrochemical behaviour of Ti-13Nb-13Zr alloy in Hanks’ solution. Mater. Res. 2006, 9, 425–429. [Google Scholar] [CrossRef] [Green Version]
- Tamilselvi, S.; Raman, V.; Rajendran, N. Corrosion behaviour of Ti–6Al–7Nb and Ti–6Al–4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy. Electrochim. Acta 2006, 52, 839–846. [Google Scholar] [CrossRef]
Nr. Crt. | Solution Type | pH | Conductivity (mS/cm) | Salinity (ppt) |
---|---|---|---|---|
1. | Hanks’ | 7.4 ± 0.5 | 14.6 ± 0.1 | 8.8 ± 0.1 |
2. | Hanks’ + 10 g/L Lactic Acid | 1.98 ± 0.1 | 15.6 ± 0.2 | 8.9 ± 0.1 |
3. | Hanks’ + 5 g/L H2O2 | 7 ± 0.3 | 14.8 ± 0.1 | 8.5 ± 0.1 |
4. | Hanks’ + 10 g/L Lactic Acid + 5 g/L H2O2 | 2.37 ± 0.2 | 15.2 ± 0.1 | 8.8 ± 0.1 |
Solutions | Rs (ohm) | R1 (kohm cm2) | CPE1 (µF/cm2) | α1 | R2 (kohm cm2) | CPE2 (µF/cm2) | α2 | Specific R (kohm cm2) |
---|---|---|---|---|---|---|---|---|
Hanks’ t = 0 h | 75.35 ± 0.20 | 13,151 ± 121 | 86.253 ± 0.18 | 0.86 ± 0.07 | 4.885 × 107 ± 0.84 | 8.65 ± 0.02 | 0.80 ± 0.01 | 71,851 ± 64 |
Hanks’ t = 48 h | 83.4 ± 0.15 | 9000 ± 23 | 89 ± 0.16 | 0.86 ± 0.01 | 7.05 × 107 ± 0.31 | 0.1 ± 0.0001 | 0.87 ± 0.02 | 79,500 ± 124 |
Hanks’ t = 120 h | 70.4 ± 0.22 | 9000 ± 26 | 89 ± 0.16 | 0.85 ± 0.05 | 7.05 × 107 ± 0.19 | 1.8 ± 0.01 | 0.90 ± 0.01 | 79,500 ± 131 |
Hanks’ t = 144 h | 78.35 ± 0.11 | 9000 ± 17 | 82 ± 0.12 | 0.86 ± 0.01 | 7.6485 × 107 ± 0.48 | 6.5 ± 0.06 | 0.87 ± 0.01 | 74,000 ± 95 |
Hanks’ t = 168 h | 72.5 ± 0.16 | 9000 ± 11 | 94.149 ± 0.21 | 0.86 ± 0.03 | 7.822 × 107 ± 0.76 | 1.8 ± 0.01 | 0.87 ± 0.01 | 87,220 ± 101 |
Hanks’–Lactic Acid, t = 0 h | 77 ± 0.39 | 10 ± 0.1 | 150 ± 1.1 | 0.88 ± 0.01 | 3.05 × 108 ± 0.14 | 11 ± 0.41 | 0.98 ± 0.04 | 305,000 ± 293 |
Hanks’–Lactic Acid, t = 48 h | 77 ± 0.11 | 10 ± 0.6 | 150 ± 0.9 | 0.88 ± 0.07 | 3.05 × 108 ± 0.22 | 11 ± 0.37 | 0.98 ± 0.01 | 305,000 ± 285 |
Hanks’–Lactic Acid t = 120 h | 77 ± 0.54 | 10 ± 1.1 | 150 ± 1.3 | 0.88 ± 0.01 | 3.05 × 108 ± 0.18 | 11 ± 0.23 | 0.98 ± 0.06 | 305,000 ± 345 |
Hanks’–Lactic Acid, t = 144 h | 65 ± 0.44 | 1000 ± 32 | 48 ± 0.31 | 0.84 ± 0.05 | 1.95 × 107 ± 0.95 | 11 ± 0.32 | 0.80 ± 0.01 | 19,500 ± 132 |
Hanks’–Lactic Acid, t = 168 h | 65 ± 0.42 | 1000 ± 18 | 48 ± 0.36 | 0.86 ± 0.01 | 1.9 × 107 ± 0.14 | 11 ± 0.15 | 0.86 ± 0.03 | 19,000 ± 104 |
Hanks’–H2O2 t = 0 h | 68.6 ± 0.61 | 10 ± 0.2 | 159.1 ± 2.3 | 0.9 ± 0.08 | 95,200 ± 74 | 8.8 ± 0.63 | 0.80 ± 0.01 | 95,210 ± 118 |
Hanks’–H2O2 t = 48 h | 76 ± 0.14 | 10 ± 0.1 | 169.1 ± 2.6 | 0.93 ± 0.03 | 390,000 ± 35 | 8.8 ± 0.17 | 0.90 ± 0.06 | 390,010 ± 342 |
Hanks’–H2O2 t = 120 h | 82.22 ± 0.26 | 10 ± 0.3 | 171.8 ± 1.9 | 0.90 ± 0.05 | 3.656 × 106 ± 0.61 | 8.8 ± 0.52 | 0.90 ± 0.01 | 3656 ± 84 |
Hanks’–H2O2 t = 144 h | 83 ± 0.69 | 10 ± 0.1 | 172.3 ± 0.9 | 0.90 ± 0.06 | 4.2442 × 106 ± 0.50 | 8.8 ± 0.13 | 0.90 ± 0.03 | 4244.3 ± 211 |
Hanks’–H2O2 t = 168 h | 84.33 ± 0.30 | 10 ± 0.4 | 169.6 ± 1.3 | 0.89 ± 0.01 | 4.266 × 108 ± 0.92 | 8.8 ± 0.36 | 0.89 ± 0.01 | 426,600 ± 94 |
Hanks’–LA + H2O2 t = 0 h | 60 ± 0.65 | 100 ± 1.2 | 55 ± 0.9 | 0.87 ± 0.008 | 67,000 ± 130 | 1.1 ± 0.01 | 0.88 ± 0.01 | 67.100 ± 0.51 |
Hanks’–LA + H2O2 t = 48 h | 58 ± 0.09 | 100 ± 1.8 | 120 ± 1.1 | 0.92 ± 0.01 | 67,900 ± 52 | 9.1 ± 0.09 | 0.92 ± 0.004 | 68.000 ± 0.89 |
Hanks’–LA +H2O2 t = 120 h | 68.68 ± 0.18 | 100 ± 0.9 | 186.6 ± 2.3 | 0.92 ± 0.03 | 73,400 ± 74 | 9.1 ± 0.03 | 0.92 ± 0.05 | 73.500 ± 1.2 |
Hanks’–LA + H2O2 t = 144 h | 68.03 ± 0.42 | 100 ± 1.4 | 200.8 ± 1.7 | 0.92 ± 0.01 | 83,300 ± 102 | 9.1 ± 0.23 | 0.92 ± 0.03 | 83.400 ± 2.6 |
Hanks’–LA + H2O2 t = 168 h | 68.03 ± 0.29 | 100 ± 1.1 | 200.8 ± 2.5 | 0.92 ± 0.006 | 100,100 ± 98 | 9.1 ± 0.74 | 0.92 ± 0.01 | 100.200 ± 1.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benea, L.; Simionescu-Bogatu, N. Reactivity and Corrosion Behaviors of Ti6Al4V Alloy Implant Biomaterial under Metabolic Perturbation Conditions in Physiological Solutions. Materials 2021, 14, 7404. https://doi.org/10.3390/ma14237404
Benea L, Simionescu-Bogatu N. Reactivity and Corrosion Behaviors of Ti6Al4V Alloy Implant Biomaterial under Metabolic Perturbation Conditions in Physiological Solutions. Materials. 2021; 14(23):7404. https://doi.org/10.3390/ma14237404
Chicago/Turabian StyleBenea, Lidia, and Nicoleta Simionescu-Bogatu. 2021. "Reactivity and Corrosion Behaviors of Ti6Al4V Alloy Implant Biomaterial under Metabolic Perturbation Conditions in Physiological Solutions" Materials 14, no. 23: 7404. https://doi.org/10.3390/ma14237404
APA StyleBenea, L., & Simionescu-Bogatu, N. (2021). Reactivity and Corrosion Behaviors of Ti6Al4V Alloy Implant Biomaterial under Metabolic Perturbation Conditions in Physiological Solutions. Materials, 14(23), 7404. https://doi.org/10.3390/ma14237404