Efficacy of Alkaline-Treated Soy Waste Biomass for the Removal of Heavy-Metal Ions and Opportunities for Their Recovery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Metal Ion Solutions and Measurements
2.2. Biosorbent Preparation and Characterization
2.3. Biosorption Experiments
3. Results and Discussion
3.1. Structural Characteristics of Na-SW Biosorbent
3.2. Effect of Initial Heavy-Metal Ion Concentration and Isotherm Modeling
3.3. Effect of Contact Time on Removal Efficiency and Kinetic Modeling
3.4. Desorption of Heavy-Metal Ions and Biosorbent Regeneration
3.5. Practical Applicability of Na-SW Biosorbent in the Treatment of Wastewater
3.6. Future Research Plan for the Recovery of Metal Ions from Industrial Effluents
- (i).
- in the case of exhausted Na-SW—thermal combustion of biomass and separation of metals from the resulting ash by sustainable procedures (such as (bio)leaching or (bio)extraction), together with the evaluation of the energy that can be recovered from the combustion process;
- (ii).
- in the case of desorption eluent—two possibilities can be identified, either the recovery of metal ions from this eluent via well-known processes (electrochemical or electro-driven processes or microbial electro-metallurgy [47,48]) or the reuse of the desorption eluent as it is in industrial activities as a source of metal ions.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akpor, O.B.; Muchie, M. Environmental and public health implications of wastewater quality. Afr. J. Biotechnol. 2011, 10, 2379–2387. [Google Scholar]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Wu, J.; Teng, Y.G.; Wu, B.B.; Su, J.; Wang, J.S. Comparison of sources and spatial distribution of heavy metals at two peri-urban areas in southwest Shenyang, China. Environ. Eng. Manag. J. 2019, 18, 31–39. [Google Scholar]
- Jan, A.T.; Azam, M.; Siddiqui, K.; Ali, A.; Choi, I.; Haq, Q.M.R. Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. Int. J. Mol. Sci. 2015, 16, 29592–29630. [Google Scholar] [CrossRef] [Green Version]
- Diaconu, M.; Pavel, L.V.; Hlihor, R.M.; Rosca, M.; Fertu, D.I.; Lenz, M.; Corvini, P.X.; Gavrilescu, M. Characterization of heavy metal toxicity in some plants and microorganisms-A preliminary approach for environmental bioremediation. New Biotechnol. 2020, 56, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.; Griswold, W. Human health effects of heavy metals. Environ. Sci. Technol. Briefs Citiz. 2009, 15, 1–6. [Google Scholar]
- Michalak, I.; Chojnacka, K.; Witek-Krowiak, A. State of the art for the biosorption process—A review. Appl. Biochem. Biotechnol. 2013, 170, 1389–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu-El-Halawa, R.; Zabin, S.A. Removal efficiency of Pb, Cd, Cu and Zn from polluted water using dithiocarbamate ligands. J. Taibah Univ. Sci. 2017, 11, 57–65. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Wang, X.R. Impact of industrial activities on heavy metal contamination in soils in three major urban agglomerations of China. J. Clean. Prod. 2019, 230, 1–10. [Google Scholar] [CrossRef]
- Abdel-Aziz, M.H.; Nirdosh, I.; Sedahmed, G.H. Ion-exchange-assisted electrochemical removal of heavy metals from dilute solutions in a stirred-tank electrochemical reactor: A mass-transfer study. Ind. Eng. Chem. Res. 2013, 52, 11655–11662. [Google Scholar] [CrossRef]
- Agwaramgbo, L.; Magee, N.; Nunez, S.K.; Mitt, K. Biosorption and chemical precipitation of lead using biomaterials, molecular sieves, and chlorides, carbonates, and sulfates of Na & Ca. J. Environ. Prot. 2013, 4, 1251–1257. [Google Scholar]
- Arief, V.O.; Trilestari, K.; Sunarso, J.; Indraswati, N.; Ismadji, S. Recent progress on biosorption of heavy metals from liquids using low cost biosorbents: Characterization, biosorption parameters and mechanism studies. CLEAN–Soil Air Water 2008, 36, 937–962. [Google Scholar] [CrossRef]
- Serafin, J.; Narkiewicz, U.; Morawski, A.W.; Wróbel, R.J.; Michalkiewicz, B. Highly microporous activated carbons from biomass for CO2 capture and effective micropores at different conditions. J. CO2 Util. 2017, 18, 73–79. [Google Scholar] [CrossRef]
- Rivas, B.L.; Palencia, M. Removal-concentration of pollutant metal-ions by water-soluble polymers in conjunction with double emulsion systems: A new hybrid method of membrane-based separation. Sep. Purif. Technol. 2011, 81, 435–443. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Balasubramanian, R. Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state-of-the-art of biosorption processes and future directions. J. Environ. Manag. 2015, 160, 283–296. [Google Scholar] [CrossRef]
- Bulgariu, D.; Bulgariu, L. Potential use of alkaline treated algae waste biomass as sustainable biosorbent for clean recovery of cadmium(II) from aqueous media: Batch and column studies. J. Clean. Prod. 2016, 112, 4525–4533. [Google Scholar] [CrossRef]
- Hlihor, R.M.; Diaconu, M.; Leon, F.; Curteanu, S.; Tavares, T.; Gavrilescu, M. Experimental analysis and mathematical prediction of Cd(II) removal by biosorption using support vector machines and genetic algorithms. New Biotechnol. 2015, 32, 358–368. [Google Scholar] [CrossRef] [Green Version]
- Febrianto, J.; Kosasih, A.N.; Sunarso, J.; Ju, Y.H.; Indrawati, N.; Ismadji, S. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. J. Hazard. Mater. 2009, 162, 616–645. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E.; Wilson, L.D.; Morin-Crini, N. Conventional and non-conventional adsorbents for wastewater treatment. Environ. Chem. Lett. 2019, 17, 195–213. [Google Scholar] [CrossRef]
- Serafin, J.; Kiełbasa, K.; Michalkiewicz, B. The new tailored nanoporous carbons from the common polypody (Polypodium vulgare): The role of textural properties for enhanced CO2 adsorption. Chem. Eng. J. 2022, 429, 131751. [Google Scholar] [CrossRef]
- Gavrilescu, M. Biosorption in environmental remediation. In Bioremediation Technology: Recent Advances; Fulekar, M.H., Ed.; Springer: New York, NY, USA, 2010; pp. 35–99. [Google Scholar]
- Gupta, V.K.; Nayak, A.; Agarwal, S. Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environ. Eng. Res. 2015, 20, 1–18. [Google Scholar] [CrossRef]
- Abubeah, R.; Altaher, H.; Khalil, T.E. Removal of hexavalent chromium using two innovative adsorbents. Environ. Eng. Manag. J. 2018, 17, 1621–1634. [Google Scholar] [CrossRef]
- Hlihor, R.M.; Figueiredo, H.; Tavares, T.; Gavrilescu, M. Biosorption potential of dead and living Arthrobacter viscosus biomass in the removal of Cr(VI): Batch and column studies. Process Saf. Environ. 2017, 108, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Kyzas, G.Z.; Matis, K.A. Biosorbents for heavy metal removal from dilute aqueous solution. In Carbon Nanomaterials for Agri-Food and Environmental Applications. Micro and Nano Technologies; Abd-Elsalam, K.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 105–132. [Google Scholar]
- Park, D.; Yun, Y.S.; Park, J.M. The past, present, and future trends of biosorption. Biotechnol. Bioprocess Eng. 2010, 15, 86–102. [Google Scholar] [CrossRef]
- Wang, J.L.; Chen, C. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 2009, 27, 195–226. [Google Scholar] [CrossRef]
- Cheng, M.H.; Dien, B.S.; Sing, V. Economics of plant oil recovery: A review. Biocatal. Agric. Biotechnol. 2019, 18, 101056. [Google Scholar] [CrossRef]
- Liu, Z.; Gui, M.; Xu, T.; Zhang, L.; Kong, L.; Qin, L.; Zou, Z. Efficient aqueous enzymatic-ultrasonication extraction of oil from Sapindus mukorossi seed kernels. Ind. Crops. Prod. 2019, 134, 124–133. [Google Scholar] [CrossRef]
- Tran, K.Q.; Werle, S.; Trinh, T.T.; Magdziarz, A.; Sobek, S.; Pogrzeba, M. Fuel characterization and thermal degradation kinetics of biomass from phytoremediation plants. Biomass Bioenerg. 2020, 134, 105469. [Google Scholar] [CrossRef]
- Farooq, U.; Kozinski, J.A.; Khan, M.A.; Athat, M. Biosorption of heavy metal ions using wheat based biosorbents—A review of the recent literature. Biores. Technol. 2010, 101, 5043–5053. [Google Scholar] [CrossRef] [PubMed]
- Dean, J.A. Handbook of Analytical Chemistry; Mc-Grow Hill Inc.: New York, NY, USA, 1995. [Google Scholar]
- Fresenius, W.; Quentin, K.E.; Schneider, W. Water Analysis. A Practical Guide to Physico-Chemical, Chemical and Microbiological Water Examination and Quality Assurance; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Freitas, O.M.M.; Martins, R.J.E.; Delerue-Matos, C.M.; Boaventura, R.A.R. Removal of Cd(II), Zn(II) and Pb(II) from aqueous solution by brown marine macro algae: Kinetic modelling. J. Hazard. Mater. 2008, 153, 493–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheng, P.X.; Ting, Y.P.; Chen, P.; Hong, L. Sorption of lead, copper, cadmium, zinc and nickel by marine algal biomass: Characterization of biosorptive capacity and investigation of mechanisms. J. Coll. Interface Sci. 2004, 275, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Shaker, M.A. Thermodynamic profile of some heavy metal ions adsorption onto biomaterial surfaces. Am. J. Appl. Sci. 2007, 4, 605–612. [Google Scholar] [CrossRef]
- Abdel-Ghani, N.T.; El-Chaghaby, G.A. Biosorption for metal ions removal from aqueous solutions: A review of recent studies. Int. J. Latest Res. Sci. Technol. 2014, 3, 24–42. [Google Scholar]
- Guo, X.; Zhange, S.; Shan, X.Q. Adsorption of metal ions on lignin. J. Hazard. Mater. 2008, 151, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Abdolali, A.; Guo, W.S.; Ngo, H.H.; Chen, S.S.; Nguyen, N.C.; Tung, K.L. Typical ligninicellulosic wastes and by-products for biosorption process in water and wastewater treatment: A critical review. Bioresour Technol. 2014, 160, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Nemeş, L.; Bulgariu, L. Optimization of process parameters for heavy metals biosorption onto mustard waste biomass. Open Chem. 2016, 14, 175–187. [Google Scholar] [CrossRef]
- Jayakumar, V.; Govindaradjane, S. Biosorption of cadmium by green algae—A review. J. Adv. Chem. Sci. 2017, 3, 480–484. [Google Scholar]
- Rangabhashiyam, S.; Anu, N.; Nandagopal Giri, M.S.; Selvaraju, N. Relevance of isotherm models in biosorption of pollutants by agricultural by-products. J. Environ. Chem. Eng. 2014, 2, 398–414. [Google Scholar] [CrossRef]
- Gerente, C.; Lee, V.K.C.; Lee, P.; McKay, G. Application of chitosan for the removal of metals from wastewaters by adsorption-mechanisms and models review. Crit. Rev. Env. Sci. Tec. 2007, 37, 41–127. [Google Scholar] [CrossRef]
- NTPA 001, Governmental Decision No. 352 of 21 April 2005 on Amending and Supplementing Governmental Decision No. 188/2002 for the Approval of Some Norms Regarding the Conditions for Discharging Wastewater into the Aquatic Environment, Romanian Official Monitor, No. 398 of 11 May 2005. Available online: https://www.rowater.ro/dacrisuri/20352_21.04.2005.pdf (accessed on 15 June 2020).
- COM 490/2017. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the 2017 List of Critical Raw Materials for the EU; European Commission: Brussels, Belgium; Available online: https://ec.europa.eu/transparency/regdoc/rep/1/2017/EN/COM-2017-490-F1-EN-MAIN-PART-1.PDF (accessed on 7 July 2020).
- Ramirez Calderon, O.A.; Abdeldayem, O.M.; Pugazhendhi, A.; Rene, E.R. Current updates and perspectives of biosorption technology: An alternative for the removal of heavy metals from wastewater. Curr. Pollut. Rep. 2020, 6, 8–27. [Google Scholar] [CrossRef]
- Hennebel, T.; Boon, N.; Maes, S.; Lenz, M. Biotechnologies for critical raw material recovery from primary and secondary sources: R&D priorities and future perspectives. New Biotechnol. 2015, 32, 121–127. [Google Scholar]
- Dominguez-Benetton, X.; Varia, J.C.; Pozo, G.; Modin, O.; Heijne, A.T.; Fransaer, J.; Rabaey, K. Metal recovery by microbial electro-metallurgy. Prog. Mater. Sci. 2018, 94, 435–461. [Google Scholar] [CrossRef]
Metal Ion | Color Reagent | λ (nm) | Experimental Conditions |
---|---|---|---|
Pb(II) | 4-(2-pyridylazo)-resorcinol | 530 | pH = 10; blank solution |
Cd(II) | Xylenol Orange | 575 | pH = 6.0; blank solution |
Zn(II) | Xylenol Orange | 570 | pH = 6.0; distilled water |
Isotherm Model | Parameter | Pb(II) | Cd(II) | Zn(II) |
---|---|---|---|---|
Langmuir model | R2 | 0.9981 | 0.9913 | 0.9928 |
qmax, mg/g | 84.03 | 45.97 | 32.39 | |
KL, L/g | 0.0047 | 0.0047 | 0.0041 | |
Freundlich model | R2 | 0.8492 | 0.6966 | 0.9136 |
1/n | 0.7823 | 0.7420 | 0.7188 | |
KF, L/g | 0.6761 | 0.9612 | 0.1209 |
Biosorbent | Pb(II) | Cd(II) | Zn(II) | References |
---|---|---|---|---|
Laminaria hyperborea (brown algae) | 30.49 | 52.39 | 19.26 | [34] |
Sargassum sp. (seaweed) | 139.11 | 61.19 | 28.89 | [35] |
non-living Pseudomonas strains | 43.57 | - | 18.49 | [36] |
Geobacillus thermodenitrificans | 36.28 | 35.57 | 24.03 | [37] |
Lignin | 89.45 | 19.34 | 14.82 | [38] |
Coconut shell | 54.61 | 11.92 | 17.14 | [39] |
Mustard waste biomass | 73.78 | 26.94 | 18.59 | [40] |
Na-SW biosorbent | 84.03 | 45.97 | 32.39 | This study |
Kinetic Model [41] | Parameter | Pb(II) | Cd(II) | Zn(II) |
---|---|---|---|---|
qeexp, mg/g | 14.84 | 7.56 | 5.07 | |
Pseudo-first-order model | R2 | 0.8701 | 0.8612 | 0.8819 |
qecalc, mg/g | 4.19 | 3.34 | 2.97 | |
k1, 1/min | 0.0406 | 0.0540 | 0.0572 | |
Pseudo-second-order model | R2 | 0.9999 | 0.9999 | 0.9999 |
qecalc, mg/g | 15.08 | 7.56 | 5.15 | |
k2, g/mg min | 0.4456 | 0.5275 | 0.5881 |
Parameter | Initial | After Biosorption | ||
---|---|---|---|---|
Pb(II) | Cd(II) | Zn(II) | ||
Pb(II), mg/L | 41.64 | 0.56 | - | - |
Cd(II), mg/L | 23.05 | - | 0.16 | - |
Zn(II), mg/L | 26.37 | - | - | 0.27 |
pH | 3.40 | 5.48 | 5.56 | 5.52 |
CCO, mg O2/L | 112.03 | 118.16 | 120.23 | 118.65 |
Cl−, mg/L | 72.16 | 73.02 | 72.87 | 72.61 |
NO3−, mg/L | 16.04 | 15.89 | 16.23 | 15.86 |
Ca(II), mg/L | 89.14 | 94.01 | 93.68 | 94.54 |
Mg(II), mg/L | 65.12 | 66.02 | 66.32 | 66.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bulgariu, L.; Ferţu, D.I.; Cara, I.G.; Gavrilescu, M. Efficacy of Alkaline-Treated Soy Waste Biomass for the Removal of Heavy-Metal Ions and Opportunities for Their Recovery. Materials 2021, 14, 7413. https://doi.org/10.3390/ma14237413
Bulgariu L, Ferţu DI, Cara IG, Gavrilescu M. Efficacy of Alkaline-Treated Soy Waste Biomass for the Removal of Heavy-Metal Ions and Opportunities for Their Recovery. Materials. 2021; 14(23):7413. https://doi.org/10.3390/ma14237413
Chicago/Turabian StyleBulgariu, Laura, Daniela Ionela Ferţu, Irina Gabriela Cara, and Maria Gavrilescu. 2021. "Efficacy of Alkaline-Treated Soy Waste Biomass for the Removal of Heavy-Metal Ions and Opportunities for Their Recovery" Materials 14, no. 23: 7413. https://doi.org/10.3390/ma14237413
APA StyleBulgariu, L., Ferţu, D. I., Cara, I. G., & Gavrilescu, M. (2021). Efficacy of Alkaline-Treated Soy Waste Biomass for the Removal of Heavy-Metal Ions and Opportunities for Their Recovery. Materials, 14(23), 7413. https://doi.org/10.3390/ma14237413