Impact of Biochar Addition and Air-Flow Rate on Ammonia and Carbon Dioxide Concentration in the Emitted Gases from Aerobic Biostabilization of Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Process
2.2. Laboratory Tests
2.3. Temperature and Gas Monitoring
2.4. Statistical Analysis
3. Results and Discussion
3.1. Characteristic of Raw Materials and Mixtures
3.2. Impact of Biochar Addition on the Biostabilization Process, Temperature Changes, and CO2 Concentration
3.3. Impact of Biochar Addition on NH3 Emission
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Gisi, S.; Todaro, F.; Fedele, G.; Carella, C.; Notarnicola, M. Alternating pure oxygen and air cycles for the biostabilization of unsorted fraction of municipal solid waste. Waste Manag. 2018, 79, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Malinowski, M.; Famielec, S.; Wolny-Koładka, K.; Sikora, J.; Gliniak, M.; Baran, D.; Sobol, Z.; Salamon, J. Impact of digestate addition on the biostabilization of undersized fraction from municipal solid waste. Sci. Total Environ. 2021, 770, 145375. [Google Scholar] [CrossRef] [PubMed]
- Adani, F.; Tambone, F.; Gotti, A. Biostabilization of municipal solid waste. Waste Manag. 2004, 24, 775–783. [Google Scholar] [CrossRef]
- Dziedzic, K.; Łapczyńska-Kordon, B.; Malinowski, M.; Niemiec, M.; Sikora, J. Impact of aerobic biostabilization and biodrying process of municipal solid waste on minimization of waste deposited in landfills. Chem. Process. Eng. 2015, 36, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Latosińska, J.; Żygadło, M.; Dębicka, M. The biological drying of municipal solid waste in an industrial reactor—A case study. Energies 2022, 15, 1039. [Google Scholar] [CrossRef]
- Jędrczak, A.; Suchowska-Kisielewicz, M. A comparison of waste stability indices for mechanical-biological waste treatment and composting plant. Int. J. Environ. Res. Public Health 2018, 15, 2585. [Google Scholar] [CrossRef] [Green Version]
- Wolny-Koładka, K.; Malinowski, M.; Zdaniewicz, M. Energy-related and mikrobiological evaluation of the effects of bulking agents on the brewery hot trub biodrying. Food Bioprod. Proc. 2021, 127, 398–407. [Google Scholar] [CrossRef]
- Epstein, E. The Science of Composting; Technomic Publishing Co., Inc.: Lancaster, UK, 1997.
- Stegenta, S.; Dębowski, M.; Bukowski, P.; Randerson, P.F.; Białowiec, A. The influence of perforation of foil reactors on greenhouse gas emission rates during aerobic biostabilization of the undersize fraction of municipal wastes. J. Environ. Manag. 2018, 207, 355–365. [Google Scholar] [CrossRef]
- Jędrczak, A. Biologiczne Przetwarzanie Odpadów; PWN: Warszawa, Polska, 2008. (In Polish) [Google Scholar]
- Bilitewski, B.; Härdtle, G.; Marek, K. Podręcznik Gospodarki Odpadami—Teoria i Praktyka; Wydawnictwo Seidel-Przywecki: Warszawa, Polska, 2003. (In Polish) [Google Scholar]
- Eklind, Y.; Sundberg, C.; Smårs, S.; Steger, K.; Sundh, I.; Kirchmann, H.; Jönsson, H. Carbon turnover and ammonia emissions during composting of biowaste at different temperatures. J. Environ. Qual. 2007, 36, 1512. [Google Scholar] [CrossRef]
- Sánchez, A.; Artola, A.; Font, X.; Gea, T.; Barrena, R.; Gabriel, D.; Sánchez-Monedero, M.A.; Roig, A.; Cayuela, M.L.; Mondini, C. Greenhouse gas emissions from organic waste composting. Environ. Chem. Lett. 2015, 13, 223–238. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Schuchardt, F.; Li, G.; Guo, R.; Zhao, Y. Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting. J. Environ. Sci. 2011, 23, 1754–1760. [Google Scholar] [CrossRef]
- Behera, S.N.; Sharma, M.; Aneja, V.P.; Balasubramanian, R. Ammonia in the atmosphere: A review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ. Sci. Pollut. Res. 2013, 20, 8092–8131. [Google Scholar] [CrossRef]
- Yuan, J.; Yang, Q.Y.; Zhang, Z.Y.; Li, G.X.; Luo, W.H.; Zhang, D.F. Use of additive and pretreatment to control odors in municipal kitchen waste during aerobic composting. J. Environ. Sci. 2015, 37, 83–90. [Google Scholar] [CrossRef]
- Novak, S.M.; Fiorelli, J.L. Greenhouse gases and ammonia emissions from organic mixed crop-dairy systems: A critical review of mitigation options. Agron. Sustain. Dev. 2010, 30, 215–236. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- De Guardia, A.; Petiot, A.; Rogeau, D.; Druilhe, C. Influence of aeration rate on nitrogen dynamics during composting. Waste Manag. 2008, 28, 575–587. [Google Scholar] [CrossRef]
- Pagans, E.; Barrena, R.; Font, X.; Sánchez, A. Ammonia emissions from the composting of different organic wastes. Dependency on process temperature. Chemosphere 2006, 62, 1534–1542. [Google Scholar] [CrossRef] [Green Version]
- Hanajima, D.; Kuroda, K.; Morishita, K.; Fujita, J.; Maeda, K.; Morioka, R. Key odor components responsible for the impact on olfactory sense during swine feces composting. Bioresour. Technol. 2010, 101, 2306–2310. [Google Scholar] [CrossRef] [PubMed]
- Beck-Friis, B.; Smårs, S.; Jönsson, H.; Eklind, Y.; Kirchmann, H. Composting of Source-Separated Household Organics at Different Oxygen Levels: Gaining an Understanding of the Emission Dynamics. Compost Sci. Util. 2003, 11, 41–50. [Google Scholar] [CrossRef]
- Puyuelo, B.; Gea, T.; Sánchez, A. Chemosphere GHG emissions during the high-rate production of compost using standard and advanced aeration strategies. Chemosphere 2014, 109, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Malińska, K.; Zabochnicka–Świątek, M. Selection of bulking agents for composting of sewage sludge. Environ. Prot. Eng. 2013, 39, 91–103. [Google Scholar] [CrossRef]
- Neugebauer, M.; Sołowiej, P. The use of green waste to overcome the difficulty in small-scale composting of organic household waste. J. Clean. Prod. 2017, 156, 865–875. [Google Scholar] [CrossRef]
- Maxianová, A.; Vaverková, M.D. Optimization of a food waste composting process with a sawdust. Int. J. Sustain. Agric. Manag. Inform. 2021, 6, 319. [Google Scholar] [CrossRef]
- Janczak, D.; Malińska, K.; Czekała, W.; Cáceres, R.; Lewicki, A.; Dach, J. Biochar to reduce ammonia emissions in gaseous and liquid phase during composting of poultry manure with wheat straw. Waste Manag. 2017, 66, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Akdeniz, N. A systematic review of biochar use in animal waste composting. Waste Manag. 2019, 88, 291–300. [Google Scholar] [CrossRef]
- Malinowski, M.; Wolny-Koładka, K.; Vaverkova, M.D. Effect of biochar addition on the OFMSW composting process under real conditions. Waste Manag. 2019, 84, 364–372. [Google Scholar] [CrossRef]
- Khan, N.; Clark, I.; Sánchez-Monedero, M.A.; Shea, S.; Meier, S.; Bolan, N. Maturity indices in co-composting of chicken manure and sawdust with biochar. Bioresour. Technol. 2014, 168, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Świechowski, K.; Matyjewicz, B.; Telega, P.; Białowiec, A. The Influence of Low-Temperature Food Waste Biochars on Anaerobic Digestion of Food Waste. Materials 2022, 15, 945. [Google Scholar] [CrossRef]
- Vandecasteele, B.; Sinicco, T.; D’Hose, T.; Vanden Nest, T.; Mondini, C. Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake. J. Environ. Manag. 2016, 168, 200–209. [Google Scholar] [CrossRef]
- Sanchez-Monedero, M.A.; Cayuela, M.L.; Roig, A.; Jindo, K.; Mondini, C.; Bolan, N. Role of biochar as an additive in organic waste composting. Bioresour. Technol. 2018, 247, 1155–1164. [Google Scholar] [CrossRef]
- Joseph, S.D.; Camps-Arbestain, M.; Lin, Y.; Munroe, P.; Chia, C.H.; Hook, J.; Van Zweiten, L.; Kimber, S.; Cowie, A.; Singh, B.P.; et al. An investigation into reactions of biochar in soils. Aust. J. Soil Res. 2010, 48, 501–515. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, Z.D.; Han, Z.Y.; Haung, Z.; Hu, B.; Shi, D.Z.; Wu, W.Z. Effect of bamboo charcoal and bamboo vinegar on nitrogen and heavy metals immobility during pig manure composting. Chemosphere 2010, 78, 177–1181. [Google Scholar] [CrossRef] [PubMed]
- Cole, D.P.; Smith, E.A.; Lee, Y.J. High-resolution mass spectrometric characterization of molecules on biochar from pyrolysis and gasification of switchgrass. Energy Fuels 2012, 26, 3803–3809. [Google Scholar] [CrossRef] [Green Version]
- Clough, T.J.; Condron, L.M.; Kammann, C.; Müller, C. A Review of Biochar and Soil Nitrogen Dynamics. Agronomy 2013, 3, 275–293. [Google Scholar] [CrossRef] [Green Version]
- Bai, S.H.; Reverchon, F.; Xu, C.-Y.; Xu, Z.; Blumfield, T.J.; Zhao, H.; Van Zwieten, L.; Wallace, H.M. Wood biochar increases nitrogen retention in field settings mainly through abiotic processes. Soil Biol. Biochem. 2015, 90, 232–240. [Google Scholar] [CrossRef]
- Nguyen, T.T.N.; Xu, C.-Y.; Tahmasbian, I.; Che, R.; Xu, Z.; Zhou, X.; Wallace, H.M.; Bai, S.H. Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis. Geoderma 2017, 288, 79–96. [Google Scholar] [CrossRef] [Green Version]
- Malińska, K.; Zabochnicka–Świątek, M.; Dach, J. Effects of biochar amendment on ammonia emission during composting of sewage sludge. Ecol. Eng. 2014, 71, 474–478. [Google Scholar] [CrossRef]
- Godlewska, P.; Schmidt, H.P.; Ok, Y.S.; Oleszczuk, P. Biochar for composting improvement and contaminants reduction. A review. Bioresour. Technol. 2017, 246, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Malinowski, M. Impact of air-flow rate and biochar addition on the oxygen concentration in waste and emitted gases during biostabilization of undersized fraction from municipal solid waste. J. Ecol. Eng. 2021, 22, 136–144. [Google Scholar] [CrossRef]
- Lehman, J. Bio-energy in the black. Front. Ecol. Environ. 2007, 5, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.W.; Li, Y.A.; Zhang, J.Y.; Wu, S.C.; Cao, Y.C.; Liang, P.; Zhang, J.; Wong, M.H.; Wang, M.Y.; Shan, S.D.; et al. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge. J. Hazard. Mater. 2016, 320, 417–426. [Google Scholar] [CrossRef]
- Malińska, K. Biowegiel odpowiedzią na aktualny problem ochrony środowiska. Inżynieria I Ochr. Sr. 2012, 15, 387–403. (In Polish) [Google Scholar]
- Klimek-Kopyra, A.; Sadowska, U.; Kuboń, M.; Gliniak, M.; Sikora, J. Sunflower husk biochar as a key agrotechnical factor enhancing sustainable soybean production. Agriculture 2021, 11, 305. [Google Scholar] [CrossRef]
- Sadowska, U.; Domagała-Świątkiewicz, I.; Żabiński, A. Biochar and its effect on plant-soil macronutrient cycling during a tree-year field trial n sandy soil with peppermint (Mentha piperita L.). Part I: Yield and macro element content in soil and plant biomass. Agronomy 2020, 10, 1950. [Google Scholar] [CrossRef]
- Villabona-Ortiz, A.; Tejada-Tovar, C.; Ortega-Toro, R. Effect of temperaturę in removing of anions in solution on biochar using Zea mays stalksas a precursor. J. Water Land Dev. 2021, 50, 64–68. [Google Scholar] [CrossRef]
- Baran, D.; Famielec, S.; Koncewicz-Baran, M.; Malinowski, M.; Sobol, Z. The changes in exhaust gas and selected waste properties during biostabilization process. Proc. ECOpole. 2016, 10, 11–18. [Google Scholar] [CrossRef]
- Neugebauer, M. The use of biological waste as a source of low-temperature heat for hotbeds in spring in north-eastern Poland. J. Environ. Manag. 2018, 225, 133–138. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, D.; Li, Y.; Chadwick, D.; Li, G.; Li, Y.; Du, L. Effects of adding bulking agents on biostabilization and drying of municipal solid waste. Waste Manag. 2017, 62, 52–60. [Google Scholar] [CrossRef]
- Tom, A.; Pawels, R.; Haridas, A. Biodrying process: A sustainable technology for treatment of municipal solid waste with high moisture content. Waste Manag. 2016, 49, 64–71. [Google Scholar] [CrossRef]
- Paredes, C.; Bernal, M.P.; Cegarra, J.; Roig, A.; Navarro, A.F. Nitrogen transformation during the composting of different organic wastes. In Progress in Nitrogen Cycling Studies; Van Cleemput, O., Hofman, G., Vermoesen, A., Eds.; Kluwer: Dordrecht, Germany, 1996; pp. 121–125. [Google Scholar]
- Askeland, M.; Clarke, B.; Paz Ferreiro, J. Comparative characterization of biochars produced at three selected pyrolysis temperatures from common woody and herbaceous waste streams. PeerJ 2019, 7, e6784. [Google Scholar] [CrossRef] [Green Version]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Bio/Technol. 2020, 19, 191–215. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Dong, X.; da Silva, E.B.; de Oliveira, L.M.; Chen, Y.; Ma, L.Q. Mechanisms of metal sorption by biochars: Biochar characteristics and modification. Chemosphere 2017, 178, 466–478. [Google Scholar] [CrossRef] [PubMed]
- Januszewicz, K.; Kazimierski, P.; Klein, M.; Kardaś, D.; Łuczak, J. Activated carbon produced by pyrolisis of waste wood and straw for potential wastewater adsorption. Materials 2020, 13, 2047. [Google Scholar] [CrossRef] [PubMed]
- Wolny-Koładka, K.; Malinowski, M.; Żukowski, W. Impact of Calcium Oxide on Hygienization and Self-Heating Prevention of Biologically Contaminated Polymer Materials. Materials 2020, 13, 4012. [Google Scholar] [CrossRef]
- Steiner, S.; Das, K.C.; Melear, N.; Lakly, D. Reducing nitrogen loss during poultry litter composting using biochar. J. Environ. Qual. 2010, 39, 1236–1242. [Google Scholar] [CrossRef] [Green Version]
- Jindo, K.; Sánchez-Monedero, M.A.; Hernández, T.; García, C.; Furukawa, T.; Matsumoto, K.; Sonoki, T.; Bastida, F. Biochar influences the microbial community structure during manure composting with agricultural wastes. Sci. Total Environ. 2012, 416, 476–481. [Google Scholar] [CrossRef]
- Downie, A.; Crosky, A.; Munroe, P. Physical properties of biochar. In Biochar for Environmental Management: Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 13–32. [Google Scholar]
- Contreras-Cisneros, R.M.; Orozco-Álvarez, C.; Piña-Guzmán, A.B.; Ballesteros-Vásquez, L.C.; Molina-Escobar, L.; Alcántara-García, S.S.; Robles-Martínez, F. The Relationship of Moisture and Temperature to the Concentration of O2 and CO2 during Biodrying in Semi-Static Piles. Processes 2021, 9, 520. [Google Scholar] [CrossRef]
- Wei, L.; Shutao, W.; Jin, Z.; Tong, X. Biochar influences the microbial community structure during tomato stalk composting with chicken manure. Bioresour. Technol. 2014, 154, 148–154. [Google Scholar] [CrossRef]
- Połomka, J.; Jędrczak, A. Efficiency of waste processing in the MBT system. Waste Manag. 2019, 96, 9–14. [Google Scholar] [CrossRef]
- Komilis, D.; Evangelou, A.; Giannakis, G.; Lymperis, C. Revisiting the elemental composition and the calorific value of the organic fraction of municipal solid wastes. Waste Manag. 2012, 32, 372–381. [Google Scholar] [CrossRef]
- Vaverková, M.D.; Elbl, J.; Voběrková, S.; Koda, E.; Adamcová, D.; Gusiatin, Z.M.; Rahman, A.A.; Radziemska, M.; Mazur, Z. Composting versus mechanical–biological treatment: Does it really make a difference in the final product parameters and maturity. Waste Manag. 2020, 106, 173–183. [Google Scholar] [CrossRef]
- Beck-Friis, B.; Smårs, S.; Jönsson, H.; Kirchmann, H. SE—Structures and Environment: Gaseous Emissions of Carbon Dioxide, Ammonia and Nitrous Oxide from Organic Household Waste in a Compost Reactor under Different Temperature Regimes. J. Agric. Eng. Res. 2001, 78, 423–430. [Google Scholar] [CrossRef]
Parameters | Unit | Run 1 (B0%) | Run 2 (B1.5%) | Run 3 (B3%) | Run 4 (B5%) | Run 5 (B10%) | Run 6 (B20%) |
---|---|---|---|---|---|---|---|
DM | wt% | 56.8 ± 0.9 | 53.6 ± 4.4 | 60.8 ± 4.1 | 57.4 ± 2.0 | 61.9 ± 2.1 | 63.7 ± 2.4 |
Ash content | % DM | 52.1 ± 0.8 | 52.9 ± 0.7 | 51.4 ± 1.8 | 50.5 ± 3.6 | 44.7 ± 6.3 | 39.0 ± 4.4 |
TC | % DM | 28.2 ± 1.4 | 27.7 ± 2.4 | 27.0 ± 3.1 | 30.9 ± 4.2 | 34.6 ± 2.3 | 40.6 ± 3.2 |
TN | % DM | 1.24 ± 0.11 | 1.23 ± 0.12 | 1.31 ± 0.16 | 1.26 ± 0.09 | 1.30 ± 0.17 | 1.23 ± 0.14 |
C/N | - | 22.8 | 22.5 | 20.6 | 24.6 | 26.6 | 32.9 |
Parameters | Unit | Run 1 (B0%) | Run 2 (B1.5%) | Run 3 (B3%) | Run 4 (B5%) | Run 5 (B10%) | Run 6 (B20%) |
---|---|---|---|---|---|---|---|
Air-flow rate: 0.1 m3·d−1·(kg organic DM)−1 | |||||||
DM | wt% | 65.3 ± 2.6 | 64.1 ± 7.4 | 70.2 ± 2.9 | 63.1 ± 1.9 | 68.1 ± 1.6 | 68.5 ± 3.0 |
Water loss | % | 19.7 | 22.7 | 23.8 | 13.6 | 16.6 | 13.2 |
Ash content | % DM | 59.5 ± 1.8 | 61.6 ± 2.2 | 59.6 ± 2.7 | 58.9 ± 4.2 | 56.9 ± 2.0 | 46.6 ± 3.4 |
TC | % DM | 22.5 ± 1.3 | 24.0 ± 1.4 | 22.4 ± 4.2 | 25.7 ± 0.9 | 28.7 ± 2.0 | 36.4 ± 2.7 |
TN | % DM | 0.87 ± 0.12 | 0.97 ± 0.18 | 1.25 ± 0.28 | 1.32 ± 0.11 | 1.41 ± 0.12 | 1.39 ± 0.22 |
C/N | - | 25.8 | 24.7 | 18.0 | 19.4 | 20.4 | 26.2 |
Nloss | % | 38.4 | 32.4 | 18.2 | 10.1 | 15.1 | 5.8 |
Air-flow rate: 0.2 m3·d−1·(kg organic DM)−1 | |||||||
DM | wt% | 74.0 ± 2.9 | 70.0 ± 5.6 | 74.1 ± 3.0 | 66.7 ± 3.0 | 70.1 ± 1.3 | 70.9 ± 2.4 |
Water loss | % | 39.8 | 35.4 | 33.9 | 21.8 | 21.7 | 19.9 |
Ash content | % DM | 59.1 ± 1.8 | 59.5 ± 1.7 | 60.1 ± 1.7 | 63.9 ± 1.7 | 57.0 ± 2.1 | 51.4 ± 2.7 |
TC | % DM | 22.7 ± 1.6 | 23.8 ± 1.4 | 22.2 ± 2.9 | 22.6 ± 2.2 | 26.9 ± 1.9 | 31.6 ± 2.6 |
TN | % DM | 0.89 ± 0.10 | 0.98 ± 0.13 | 1.29 ± 0.11 | 1.42 ± 0.19 | 1.45 ± 0.22 | 1.42 ± 0.23 |
C/N | - | 25.4 | 24.6 | 17.2 | 16.0 | 18.6 | 22.2 |
Nloss | % | 36.4 | 29.5 | 16.3 | 11.4 | 12.7 | 12.5 |
Air-flow rate: 0.4 m3·d−1·(kg organic DM)−1 | |||||||
DM | wt% | 76.5 ± 2.4 | 72.8 ± 6.9 | 74.8 ± 3.8 | 68.1 ± 1.9 | 70.7 ± 2.2 | 72.1 ± 2.6 |
Water loss | % | 45.6 | 41.4 | 35.5 | 25.1 | 23.3 | 23.0 |
Ash content | % DM | 60.5 ± 1.9 | 61.6 ± 1.7 | 60.5 ± 1.8 | 61.6 ± 2.5 | 56.5 ± 3.1 | 51.4 ± 1.6 |
TC | % DM | 21.9 ± 1.1 | 22.6 ± 1.2 | 21.9 ± 2.8 | 21.4 ± 1.1 | 27.1 ± 1.8 | 30.6 ± 2.1 |
TN | % DM | 0.89 ± 0.06 | 0.97 ± 0.13 | 1.30 ± 0.12 | 1.36 ± 0.10 | 1.48 ± 0.27 | 1.47 ± 0.23 |
C/N | - | 24.5 | 23.3 | 16.8 | 15.7 | 18.4 | 20.7 |
Nloss | % | 37.9 | 32.5 | 15.9 | 11.4 | 10.1 | 9.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malinowski, M.; Famielec, S. Impact of Biochar Addition and Air-Flow Rate on Ammonia and Carbon Dioxide Concentration in the Emitted Gases from Aerobic Biostabilization of Waste. Materials 2022, 15, 1771. https://doi.org/10.3390/ma15051771
Malinowski M, Famielec S. Impact of Biochar Addition and Air-Flow Rate on Ammonia and Carbon Dioxide Concentration in the Emitted Gases from Aerobic Biostabilization of Waste. Materials. 2022; 15(5):1771. https://doi.org/10.3390/ma15051771
Chicago/Turabian StyleMalinowski, Mateusz, and Stanisław Famielec. 2022. "Impact of Biochar Addition and Air-Flow Rate on Ammonia and Carbon Dioxide Concentration in the Emitted Gases from Aerobic Biostabilization of Waste" Materials 15, no. 5: 1771. https://doi.org/10.3390/ma15051771
APA StyleMalinowski, M., & Famielec, S. (2022). Impact of Biochar Addition and Air-Flow Rate on Ammonia and Carbon Dioxide Concentration in the Emitted Gases from Aerobic Biostabilization of Waste. Materials, 15(5), 1771. https://doi.org/10.3390/ma15051771