Bitumen Binders Modified with Sulfur/Organic Copolymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Structure of the Experimental Work
2.3. Synthesis of Sulfur/Organic Copolymers
2.4. Thermal Analysis of Sulfur/Organic Copolymers
2.5. Modification of the Bitumen Binders
2.6. Analysis of Physical Properties of Bitumen Binders
2.7. FTIR Measurements of Bitumen Binders
2.8. Thermal Analysis of Bitumen Binders
2.9. Nanoindentation Test of Bitumen Binders
2.10. Surface Free Energy of Bitumen Binders
3. Results and Discussion
3.1. Thermal Behaviour of Sulfur/Organic Copolymers (TGA-DSC)
3.2. Properties of Bitumen Binders Modified with Sulfur/Organic Copolymers (BBMSOC)
3.2.1. Physical Properties of BBMSOC
3.2.2. Nanoindentation Results
3.2.3. Adhesive Properties and Surface Energy of BBMSOC
3.2.4. FTIR Spectroscopy Analysis of BBMSOC
3.2.5. Thermal Behavior of BBMSOC (TGA-DSC)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mineral Commodity Summaries 2020; U.S. Department of the Interior: Washington, DC, USA, 2020; pp. 160–161.
- Chung, W.J.; Griebel, J.J.; Kim, E.T.; Yoon, H.; Simmonds, A.G.; Ji, H.J.; Dirlam, P.T.; Glass, R.S.; Wie, J.J.; Nguyen, N.A.; et al. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 2013, 5, 518–524. [Google Scholar] [CrossRef]
- Nguyen, T.B. Recent advances in organic reactions involving elemental sulfur. Adv. Synth. Catal. 2017, 359, 1066–1130. [Google Scholar] [CrossRef]
- Griebel, J.J.; Glass, R.S.; Char, K.; Pyun, J. Polymerizations with elemental sulfur: A novel route to high sulfur content polymers for sustainability, energy and defense. Prog. Polym. Sci. 2016, 58, 90–125. [Google Scholar] [CrossRef] [Green Version]
- Tarasova, N.P.; Zanin, A.A.; Krivoborodov, E.G.; Mezhuev, Y.O. Elemental sulphur in the synthesis of sulphur-containing polymers: Reaction mechanisms and green prospects. RSC Adv. 2021, 11, 9008–9020. [Google Scholar] [CrossRef]
- Lee, T.; Dirlam, P.T.; Njardarson, J.T.; Glass, R.S.; Pyun, J. Polymerizations with Elemental Sulfur: From Petroleum Refining to Polymeric Materials. J. Am. Chem. Soc. 2022, 144, 5–22. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Birgisson, B.; Kringos, N. Polymer modification of bitumen: Advances and challenges. Eur. Polym. J. 2014, 54, 18–38. [Google Scholar] [CrossRef] [Green Version]
- Porto, M.; Caputo, P.; Loise, V.; Eskandarsefat, S.; Teltayev, B.; Oliviero Rossi, C. Bitumen and Bitumen Modification: A Review on Latest Advances. Appl. Sci. 2019, 9, 742. [Google Scholar] [CrossRef] [Green Version]
- Pyshyev, S.; Gunka, V.; Grytsenko, Y.; Bratychak, M. Polymer modified bitumen. Chem. Chem. Technol. 2016, 10, 631–636. [Google Scholar] [CrossRef]
- Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.B.; Pyshyev, S. Application of phenol-cresol-formaldehyde resin as an adhesion promoter for bitumen and asphalt concrete. Road Mater. Pavement Des. 2021, 22, 2906–2918. [Google Scholar] [CrossRef]
- Polacco, G.; Berlincioni, S.; Biondi, D.; Stastna, J.; Zanzotto, L. Asphalt modification with different polyethylene-based polymers. Eur. Polym. J. 2005, 41, 2831–2844. [Google Scholar] [CrossRef]
- Giavarini, C.; De Filippis, P.; Santarelli, M.L.; Scarsella, M. Production of stable polypropylene-modified bitumens. Fuel 1996, 75, 681–686. [Google Scholar] [CrossRef]
- Sengoz, B.; Topal, A.; Isikyakar, G. Morphology and image analysis of polymer modified bitumens. Constr Build. Mater. 2009, 23, 1986–1992. [Google Scholar] [CrossRef]
- Becker, M.Y.; Muller, A.J.; Rodriguez, Y. Use of rheological compatibility criteria to study SBS modified asphalts. J. Appl. Polym. Sci. 2003, 90, 1772–1782. [Google Scholar]
- Strap, G.; Astakhova, O.; Lazorko, O.; Shyshchak, O.; Bratychak, M. Modified Phenol-Formaldehyde Resins and their Application in Bitumen-Polymeric Mixtures. Chem. Chem. Technol. 2013, 7, 279–287. [Google Scholar] [CrossRef]
- Bratychak, M.; Grynyshyn, O.; Astakhova, O.; Shyshchak, O.; Wacławek, W. Functional petroleum resins based on pyrolysis by-products and their application for bitumen modification. Ecol. Chem. Eng. 2010, 17, 309–315. [Google Scholar]
- Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved, M.; Romanchuk, V.; Korchak, B. Chemical modification of road oil bitumens by formaldehyde. Pet. Coal. 2020, 62, 420–429. [Google Scholar]
- Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Bratychak, M. Production of bitumen modified with low-molecular organic compounds from petroleum residues. 2. Bitumen modified with maleic anhydride. Chem. Chem. Technol. 2021, 15, 443–449. [Google Scholar] [CrossRef]
- Sienkiewicz, M.; Borzędowska-Labuda, K.; Wojtkiewicz, A.; Janik, H. Development of methods improving storage stability of bitumen modified with ground tire rubber: A review. Fuel Process. Technol. 2017, 159, 272–279. [Google Scholar] [CrossRef]
- Bencowitz, I.; Boe, E.S. Effect of Sulphur upon some of the Properties of Asphalts. Proc. ASTM 1938, 38, 539. [Google Scholar]
- McBee, W.C.; Sullivan, T.A. Sulfur utilization in asphalt paving materials. In New Uses of Sulfur, 2nd ed.; Bourne, D.J., Ed.; American Chemical Society: Washington, DC, USA, 1978; Volume 165, pp. 135–160. [Google Scholar]
- Morgan Prince, S. Construction and Performance of a Sulfur-Asphalt Road in Texas. In New Uses of Sulfur, 2nd ed.; Bourne, D.J., Ed.; American Chemical Society: Washington, DC, USA, 1978; Volume 165, pp. 161–171. [Google Scholar]
- Gawel, I. Sulphur-modified asphalts. In Developments in Petroleum Science; Yen, T.F., Chilingarian, G.V., Eds.; Elsevier Science B.V.: Amsterdam, The Netherlands, 2000; Volume 40, pp. 515–535. [Google Scholar]
- Rodrigues, C.; Hanumanthgari, R. Polymer modified bitumens and other modified binders. In The Shell Bitumen Handbook, 6th ed.; Hunter, R.N., Self, A., Read, J., Eds.; ICE Publishing: London, UK, 2015; ISBN 978-0727758378. [Google Scholar]
- Syroezhko, A.M.; Begak, O.Y.; Fedorov, V.V.; Gusarova, E.N. Modification of paving asphalts with sulphur. Russ. J. Appl. Chem. 2003, 76, 491–496. [Google Scholar] [CrossRef]
- Fritschy, G.; Papirer, E.; Chambu, C. Sulfur modified bitumen: A new binder. Rheol. Acta 1981, 20, 78–84. [Google Scholar] [CrossRef]
- Kumar, P.; Saboo, N. Rheological Investigations of Sulfur Modified Bitumen. In Proceedings of the International Conference on Sustainable Civil Infrastructure (ICSCI 2014), Hyderabad, Telangana, India, 17–18 October 2014; pp. 703–713. [Google Scholar]
- Petrossi, U. Modifizierte Bitumen und Verahren zu Ihrer Herstellung. U.S. Patent 3803066, 22 February 1971. [Google Scholar]
- Wen, G.; Zhang, Y.; Zhang, Y.; Sun, K.; Chen, Z. Vulcanization characteristics of asphalt/SBS blends in the presence of sulfur. J. Appl. Polym. Sci. 2001, 82, 989–996. [Google Scholar] [CrossRef]
- Elkholy, S.A.; Abd El-Rahman, A.M.M.; El-Shafie, M.; Abo-Shanab, Z.L. Physical and rheological properties of modified sulfur asphalt binder. Int. J. Pavement Res. Technol. 2018, 11, 838–845. [Google Scholar] [CrossRef]
- Liang, M.; Xin, X.; Fan, W.; Wang, H.; Ren, S.; Shi, J. Effects of polymerized sulfur on rheological properties, morphology and stability of SBS modified asphalt. Constr. Build. Mater. 2017, 150, 860–871. [Google Scholar] [CrossRef]
- Wręczycki, J.; Bieliński, D.M.; Anyszka, R. Sulfur/Organic Copolymers as Curing Agents for Rubber. Polymers 2018, 10, 870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DSTU B V.2.7-135:2014; Polymer-Modified Road Bitumens. Specifications. Ministry of Regional Development of Building and Housing and Communal Services of Ukraine: Kyiv, Ukraine, 2014.
- PN-EN 1427:2015; European Standard. Bitumen and Bituminous Binders. Determination of the Softening Point. Ring and Ball Method. Polish Committee for Standardization: Warsaw, Poland, 2015.
- PN-EN 1426:2015; European Standard. Bitumen and Bituminous Binders. Methods of Tests for Petroleum and Its Products. Determination of Needle Penetration. Polish Committee for Standardization: Warsaw, Poland, 2015.
- PN-EN 12591:2009; Bitumen and Bituminous Binders—Specifications for Paving Grade Bitumens. Polish Committee for Standardization: Warsaw, Poland, 2009.
- PN-EN 13587:2010; Bitumen and Bituminous Binders. Determination of the Tensile Properties of Bituminous Binders by the Tensile Test Method. Polish Committee for Standardization: Warsaw, Poland, 2010.
- PN-EN 12593:2015; European Standard. Bitumen and Bituminous Binders. Determination of the Fraas Breaking Point. Polish Committee for Standardization: Warsaw, Poland, 2015.
- DSTU B V.2.7-81-98; Viscous Petroleum Road Bitumens. Method for Determination of Adhesion to the Surface of the Glass and Stone Materials. State Committee of Building, Architecture and Housing Policy of Ukraine: Kyiv, Ukraine, 1999.
- DSTU 4044-2001; Point 8.6. Ukrainian Research and Development Institute of Oil Refining Industry “MASMA”: Kyiv, Ukraine, 2001.
- DSTU B V.2.7-89-99; Point 28 Materials on the Basis of Organic Binders for Road and Airfield Construction. Test Methods. DerzhdorNDI: Kyiv, Ukraine, 2002.
- PN EN 12607-1:2014; Bitumen and Bituminous Binders—Determination of the Resistance to Hardening under Influence of Heat and Air—Part 1: RTFOT Method. Polish Committee for Standardization: Warsaw, Poland, 2014.
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Currell, B.R.; Williams, A.J.; Mooney, A.J.; Nash, B.J. Plasticization of sulfur. In New Uses of Sulfur, 1st ed.; West, J.R., Ed.; American Chemical Society: Washington, DC, USA, 1975; Volume 1, pp. 1–17. [Google Scholar]
- Duda, A.; Penczek, S. Anionic copolymerization of elemental sulfur with propylene sulfide. Macromolecules 1982, 15, 36–40. [Google Scholar] [CrossRef]
- Florjańczyk, Z.; Penczek, S. Polysulfides. In Polymer Chemistry, 2nd ed.; Duda, A., Ed.; Publishing House of the Technical University of Warsaw: Warsaw, IN, USA, 2002; Volume 2, pp. 216–231. [Google Scholar]
- Oliviero Rossi, C.; Teltayev, B.; Angelico, R. Adhesion Promoters in Bituminous Road Materials: A Review. Appl. Sci. 2017, 7, 524. [Google Scholar] [CrossRef] [Green Version]
- Kazitsyna, L.A.; Kupletskaya, N.B. Primeneniye UF-, IK-i YAMR-Spektroskopii v Organicheskoy Khimi; Vysshaya Shkola: Moscow, Russia, 1971. (In Russian) [Google Scholar]
- Parker, F.S. Applications of Infrared Spectroscopy in Biochemistry, Biology, and Medicine, 1st ed.; A. Higler: London, UK, 1971. [Google Scholar]
- Bellamy, L.J. The Infrared Spectra of Complex Molecules, 3rd ed.; Wiley: New York, NY, USA, 1975. [Google Scholar]
- Colthup, N.B.; Daly, L.H.; Wiberley, S.G. Introduction to Infrared and Raman Spectroscopy, 2nd ed.; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Okhotnikova, E.S.; Ganeeva, Y.M.; Frolov, I.N.; Ziganshin, M.A.; Firsin, A.A.; Timirgalieva, A.H.; Yusupova, T.N. Thermal and structural characterization of bitumen by modulated differential scanning calorimetry. J. Therm. Anal. Calorim. 2020, 142, 211–216. [Google Scholar] [CrossRef]
- Claudy, P.; Letoffe, J.M.; King, G.N.; Planche, J.P.; Brule, B. Characterization of paving asphalts by differential scanning calorimetry. Fuel Sci. Technol. Int. 1991, 9, 71–92. [Google Scholar] [CrossRef]
Sample Symbol | Sulfur/Organic Comonomer(s) Ratio (wt %) | Reaction Temperature (°C) | Reaction Time 1 (h) | Organoleptic Viscosity 2 |
---|---|---|---|---|
S/DCPD | 90.9/9.1 | 140 | 3 | Low |
S/DCPD/LIM | 87.0/8.7/4.3 | 140 | 3 | Moderate |
S/DCPD/LIM/ST | 83.3/8.3/4.2/4.2 | 140 | 3 | Moderate to High |
Sample Symbol | TPT 1 [°C] | ΔHPT 2 [J/g] | T5% 3 [°C] |
---|---|---|---|
Elemental sulfur (S8) | 108 a; 120 b, 170 c | 14.5 a; 44.9 b; 7.6 c | 320 |
S/DCPD | 108 d | 27.9 d | 245 |
S/DCPD/LIM | 104 d | 21.2 d | 244 |
S/DCPD/LIM/ST | 98 d | 14.7 d | 245 |
Property | BND 60/90 | BMPA 60/90-53 | S/DCPD | S/DCPD/LIM | S/DCPD/LIM/ST | |||
---|---|---|---|---|---|---|---|---|
1% wt | 2.5% wt | 1% wt | 2.5% wt | 1% wt | 2.5% wt | |||
Homogeneity (-) | n.s. 1 | 2 | + | + | + | + | + | + |
Softening Point (°C) | 46 | ≥53 | 49 | 53 | 49 | 53 | 49 | 51 |
Ductility at 25 °C (cm) | 63 | ≥15 | 61 | 42 | 60 | 35 | 58 | 40 |
Penetration at 25 °C (0.1 mm) | 70 | 61–90 | 68 | 62 | 62 | 50 | 64 | 46 |
Penetration index (-) | −1.5 | n.s. 1 | −0.76 | 0.03 | −0.96 | −0.31 | −1.5 | −1.15 |
Fraas breaking point (°C) | −18 | ≤−20 | −18 | −19 | −18 | −18 | −18 | −19 |
Adhesion to gravel (mark) | 3 | ≥3 | 3 | 5 | 3 | 4 | 3 | 5 |
Adhesion to glass (%) | 25 | ≥20 | 43 | 87 | 50 | 65 | 54 | 80 |
Property | BND 60/90 | S/DCPD (2.5% wt) | S/DCPD/LIM (2.5% wt) | S/DCPD/LIM/ST (2.5% wt) | ||||
---|---|---|---|---|---|---|---|---|
Unaged | RTFOT | Unaged | RTFOT | Unaged | RTFOT | Unaged | RTFOT | |
Softening Point (°C) | 46 | 52 | 53 | 56 | 53 | 56 | 51 | 55 |
Change in Softening Point (°C) | - | 6 | - | 3 | - | 3 | - | 4 |
Penetration at 25 °C (0.1 mm) | 70 | 55 | 62 | 48 | 50 | 30 | 46 | 24 |
Residual Penetration (%) | - | 79 | - | 77 | - | 60 | - | 52 |
Change in Weight (wt %) | - | 0.030 | - | 0.055 | - | 0.190 | - | 0.237 |
Wavenumber [cm−1] | Characteristic of the Peak |
---|---|
2950 | Asymmetric stretching vibrations ν (C–H) in CH3– group |
2920 | Asymmetric stretching vibrations ν (C–H) in CH2– group |
2850 | Symmetric stretching vibrations ν (C–H) in CH2– group |
1600 | Stretching vibrations ν (C=C) in aromatic rings |
1455 | Asymmetric bending vibrations δ (C–H) in CH2– group |
1375 | Symmetric bending vibrations δ (C–H) in CH3– group |
1275 | Wagging deformational vibrations ω (C–S and S–S) in RCH2S- and RCH2S-S-group |
1255 | |
1010–1030 | Rocking vibrations (bending with torsion) ν (S=O) in sulfoxide group |
870 | Deformational vibrations of CH– group in 1,2,4-trisubstituted derivatives of benzene |
810 | Deformational vibrations of CH– group in tetrasubstituted derivatives of benzene |
755 | Deformational vibrations of CH– group in trisubstituted derivatives of benzene |
745 | Deformational vibrations of CH– group in 1,2,3-trisubstituted derivatives of benzene |
720 | Rocking vibrations of CH2– group in 1,3-disubstituted derivatives of benzene |
Sample Symbol | Tg 1 [°C] | Tg 2 | T5% 3 [°C] |
---|---|---|---|
BND 60/90 | −39.6 | −30.2 | 360 |
BND 60/90 + S/DCPD (1.0%) | −34.9 | −31.7 | 353 |
BND 60/90 + S/DCPD (2.5%) | −32.4 | −29.8 | 360 |
BND 60/90 + S/DCPD/LIM (1.0%) | −39.2 | −32.0 | 362 |
BND 60/90 + S/DCPD/LIM (2.5%) | −43.9 | −34.0 | 357 |
BND 60/90 + S/DCPD/LIM/ST (1.0%) | −41.7 | −31.8 | 360 |
BND 60/90 + S/DCPD/LIM/ST (2.5%) | −39.8 | −32.7 | 357 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wręczycki, J.; Demchuk, Y.; Bieliński, D.M.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials 2022, 15, 1774. https://doi.org/10.3390/ma15051774
Wręczycki J, Demchuk Y, Bieliński DM, Bratychak M, Gunka V, Anyszka R, Gozdek T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials. 2022; 15(5):1774. https://doi.org/10.3390/ma15051774
Chicago/Turabian StyleWręczycki, Jakub, Yuriy Demchuk, Dariusz M. Bieliński, Michael Bratychak, Volodymyr Gunka, Rafał Anyszka, and Tomasz Gozdek. 2022. "Bitumen Binders Modified with Sulfur/Organic Copolymers" Materials 15, no. 5: 1774. https://doi.org/10.3390/ma15051774
APA StyleWręczycki, J., Demchuk, Y., Bieliński, D. M., Bratychak, M., Gunka, V., Anyszka, R., & Gozdek, T. (2022). Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials, 15(5), 1774. https://doi.org/10.3390/ma15051774