Fire Behavior of Polyamide 12/Rubber Formulations Made by Laser Sintering
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Influence of Additives on Sintering Window
3.2. Morphologies, Porosities, and Thermal Stabilities of the LS Materials
3.3. Fire Tests on LS Samples
3.4. Rheological Measurements
3.5. FTIR Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tan, L.J.; Zhu, W.; Zhou, K. Recent Progress on Polymer Materials for Additive Manufacturing. Adv. Funct. Mater. 2020, 30, 2003062. [Google Scholar] [CrossRef]
- Jain, P.K.; Pandey, P.M.; Rao, P.V.M. Selective Laser Sintering of Clay-Reinforced Polyamide. Polym. Compos. 2009, 31, 732–743. [Google Scholar] [CrossRef]
- Kim, J.; Creasy, T.S. Selective Laser Sintering Characteristics of Nylon 6/Clay-Reinforced Nanocomposite. Polym. Test. 2004, 23, 629–636. [Google Scholar] [CrossRef]
- Salmoria, G.V.; Paggi, R.A.; Lago, A.; Beal, V.E. Microstructural and Mechanical Characterization of PA12/MWCNTs Nanocomposite Manufactured by Selective Laser Sintering. Polym. Test. 2011, 30, 611–615. [Google Scholar] [CrossRef] [Green Version]
- Yuan, S.; Zheng, Y.; Chua, C.K.; Yan, Q.; Zhou, K. Electrical and Thermal Conductivities of MWCNT/Polymer Composites Fabricated by Selective Laser Sintering. Compos. Part A Appl. Sci. Manuf. 2018, 105, 203–213. [Google Scholar] [CrossRef]
- Batistella, M.; Regazzi, A.; Pucci, M.F.; Lopez-Cuesta, J.-M.; Kadri, O.; Bordeaux, D.; Ayme, F. Selective Laser Sintering of Polyamide 12/Flame Retardant Compositions. Polym. Degrad. Stab. 2020, 181, 109318. [Google Scholar] [CrossRef]
- Schneider, K.; Wudy, K.; Drummer, D. Flame-Retardant Polyamide Powder for Laser Sintering: Powder Characterization, Processing Behavior and Component Properties. Polymers 2020, 12, 1697. [Google Scholar] [CrossRef]
- Greiner, S.; Wudy, K.; Lanzl, L.; Drummer, D. Selective Laser Sintering of Polymer Blends: Bulk Properties and Process Behavior. Polym. Test. 2017, 64, 136–144. [Google Scholar] [CrossRef]
- Salmoria, G.V.; Lauth, V.R.; Cardenuto, M.R.; Magnago, R.F. Characterization of PA12/PBT Specimens Prepared by Selective Laser Sintering. Opt. Laser Technol. 2018, 98, 92–96. [Google Scholar] [CrossRef]
- Salmoria, G.V.; Leite, J.L.; Paggi, R.A.; Lago, A.; Pires, A.T.N. Selective Laser Sintering of PA12/HDPE Blends: Effect of Components on Elastic/Plastic Behavior. Polym. Test. 2008, 27, 654–659. [Google Scholar] [CrossRef]
- Salmoria, G.V.; Leite, J.L.; Paggi, R.A. The Microstructural Characterization of PA6/PA12 Blend Specimens Fabricated by Selective Laser Sintering. Polym. Test. 2009, 28, 746–751. [Google Scholar] [CrossRef]
- Gnatowski, A.; Koszkul, J. Investigation on PA/PP Mixture Properties by Means of DMTA Method. J. Mater. Process. Technol. 2006, 175, 212–217. [Google Scholar] [CrossRef]
- Pigłowski, J.; Gancarz, I.; Wlaźlak, M.; Kammer, H.-W. Crystallization in Modified Blends of Polyamide and Polypropylene. Polymer 2000, 41, 6813–6824. [Google Scholar] [CrossRef]
- Ebrahimi Jahromi, A.; Ebrahimi Jahromi, H.R.; Hemmati, F.; Saeb, M.R.; Goodarzi, V.; Formela, K. Morphology and Mechanical Properties of Polyamide/Clay Nanocomposites Toughened with NBR/NBR-g-GMA: A Comparative Study. Compos. Part B Eng. 2016, 90, 478–484. [Google Scholar] [CrossRef]
- Cai, Z.; Li, Y.; Yang, Z.; Jiang, M. Effects of Acrylonitrile Content of Nitrile Rubber on Mechanical Properties of Polyamide 6/Nitrile Rubber Blends. Mater. Res. Express 2019, 6, 125362. [Google Scholar] [CrossRef]
- Ohlsson, B.; Hassander, H.; Törnell, B. Improved Compatibility between Polyamide and Polypropylene by the Use of Maleic Anhydride Grafted SEBS. Polymer 1998, 39, 6705–6714. [Google Scholar] [CrossRef]
- González-Montiel, A.; Keskkula, H.; Paul, D.R.R. Impact-Modified Nylon 6/Polypropylene Blends: 2. Effect of Reactive Functionality on Morphology and Mechanical Properties. Polymer 1995, 36, 4605–4620. [Google Scholar] [CrossRef]
- Mehrabzadeh, M.; Delfan, N. Thermoplastic Elastomers of Butadiene-Acrylonitrile Copolymer and Polyamide. VI. Dynamic Crosslinking by Different Systems. J. Appl. Polym. Sci. 2000, 77, 2057–2066. [Google Scholar] [CrossRef]
- Mehrabzadeh, M.; Burford, R.P. Effect of Crosslinking on Polyamide 11/Butadiene-Acrylonitrile Copolymer Blends. J. Appl. Polym. Sci. 1997, 64, 1605–1611. [Google Scholar] [CrossRef]
- Bhowmick, A.K.; Inoue, T. Structure Development during Dynamic Vulcanization of Hydrogenated Nitrile Rubber/Nylon Blends. J. Appl. Polym. Sci. 1993, 49, 1893–1900. [Google Scholar] [CrossRef]
- Bhowmick, A.K.; Chiba, T.; Inoue, T. Reactive Processing of Rubber–Plastic Blends: Role of Chemical Compatibilizer. J. Appl. Polym. Sci. 1993, 50, 2055–2064. [Google Scholar] [CrossRef]
- Chowdhury, R.; Banerji, M.S.; Shivakumar, K. Development of Acrylonitrile-Butadiene (NBR)/Polyamide Thermoplastic Elastomeric Compositions: Effect of Carboxylation in the NBR Phase. J. Appl. Polym. Sci. 2006, 100, 1008–1012. [Google Scholar] [CrossRef]
- Peng, J.; Zhang, X.; Qiao, J.; Wei, G. Radiation Preparation of Ultrafine Carboxylated Styrene-Butadiene Rubber Powders and Application for Nylon 6 as an Impact Modifier. J. Appl. Polym. Sci. 2002, 86, 3040–3046. [Google Scholar] [CrossRef]
- Mailhos-Lefievre, V.; Sallet, D.; Martel, B.; Savas, L.A.; Dogan, M.; Lao, S.C.; Koo, J.H.; Moon, T.J.; Londa, M.; Ibeh, C.C.; et al. Thermal Degradation of Pure and Flame-Retarded Polyamides 11 and 12. Polym. Degrad. Stab. 1989, 23, 327–336. [Google Scholar] [CrossRef]
- Samyn, F.; Bourbigot, S. Thermal Decomposition of Flame Retarded Formulations PA6/Aluminum Phosphinate/Melamine Polyphosphate/Organomodified Clay: Interactions between the Constituents? Polym. Degrad. Stab. 2012, 97, 2217–2230. [Google Scholar] [CrossRef]
- Isbasar, C.; Hacaloglu, J. Investigation of Thermal Degradation Characteristics of Polyamide-6 Containing Melamine or Melamine Cyanurate via Direct Pyrolysis Mass Spectrometry. J. Anal. Appl. Pyrolysis 2012, 98, 221–230. [Google Scholar] [CrossRef]
- Turski Silva Diniz, A.; Huth, C.; Schartel, B. Dripping and Decomposition under Fire: Melamine Cyanurate vs. Glass Fibres in Polyamide 6. Polym. Degrad. Stab. 2020, 171, 109048. [Google Scholar] [CrossRef]
- Bourbigot, S.; Devaux, E.; Flambard, X. Flammability of Polyamide-6/Clay Hybrid Nanocomposite Textiles. Polym. Degrad. Stab. 2002, 75, 397–402. [Google Scholar] [CrossRef]
- Gilman, J.W. Flammability and Thermal Stability Studies of Polymer Layered-Silicate (Clay) Nanocomposites. Appl. Clay Sci. 1999, 15, 31–49. [Google Scholar] [CrossRef]
- Ferry, L.; Sonnier, R.; Lopez-Cuesta, J.-M.; Petigny, S.; Bert, C. Thermal Degradation and Flammability of Polyamide 11 Filled with Nanoboehmite. J. Therm. Anal. Calorim. 2017, 129, 1029–1037. [Google Scholar] [CrossRef]
- Batistella, M.A.; Sonnier, R.; Otazaghine, B.; Petter, C.O.; Lopez-Cuesta, J.-M. Interactions between Kaolinite and Phosphinate-Based Flame Retardant in Polyamide 6. Appl. Clay Sci. 2018, 157, 248–256. [Google Scholar] [CrossRef]
- Vahabi, H.; Dumazert, L.; Khalili, R.; Saeb, M.R.; Lopez-Cuesta, J.-M. Flame Retardant PP/PA6 Blends: A Recipe for Recycled Wastes. Flame Retard. Therm. Stab. Mater. 2019, 2, 1–8. [Google Scholar] [CrossRef]
- Kouini, B.; Serier, A. Combustion Behavior of Polypropylene/Polyamide66/Clay Nanocomposites. J. Vinyl Addit. Technol. 2017, 23, E68–E71. [Google Scholar] [CrossRef]
- Vahabi, H.; Kandola, B.; Saeb, M. Flame Retardancy Index for Thermoplastic Composites. Polymers 2019, 11, 407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindholm, J.; Brink, A.; Hupa, M. Influence of Decreased Sample Size on Cone Calorimeter Results. Fire Mater. 2012, 36, 63–73. [Google Scholar] [CrossRef]
- Gogolewski, S.; Czerntawska, K.; Gastorek, M. Effect of Annealing on Thermal Properties and Crystalline Structure of Polyamides. Nylon 12 (Polylaurolactam). Colloid Polym. Sci. 1980, 258, 1130–1136. [Google Scholar] [CrossRef]
- Ishikawa, T.; Nagai, S.; Kasai, N. Thermal Behavior of α Nylon-12. J. Polym. Sci. Polym. Phys. Ed. 1980, 18, 1413–1419. [Google Scholar] [CrossRef]
- de O. Gomes, A.C.; Soares, B.G.; Oliveira, M.G.; Machado, J.C.; Windmöller, D.; Paranhos, C.M. Characterization of Crystalline Structure and Free Volume of Polyamide 6/Nitrile Rubber Elastomer Thermoplastic Vulcanizates: Effect of the Processing Additives. J. Appl. Polym. Sci. 2017, 134, 4–11. [Google Scholar] [CrossRef]
- Fornes, T.D.D.; Paul, D.R.R. Crystallization Behavior of Nylon 6 Nanocomposites. Polymer 2003, 44, 3945–3961. [Google Scholar] [CrossRef]
- Drummer, D.; Greiner, S.; Zhao, M.; Wudy, K. A novel approach for understanding laser sintering of polymers. Addit. Manuf. 2019, 27, 307–315. [Google Scholar] [CrossRef]
- Flodberg, G.; Pettersson, H.; Yang, L. Pore Analysis and Mechanical Performance of Selective Laser Sintered Objects. Addit. Manuf. 2018, 24, 307–315. [Google Scholar] [CrossRef]
- Laumer, T.; Stichel, T.; Nagulin, K.; Schmidt, M. Optical Analysis of Polymer Powder Materials for Selective Laser Sintering. Polym. Test. 2016, 56, 207–213. [Google Scholar] [CrossRef]
- Paran, S.M.R.; Vahabi, H.; Jouyandeh, M.; Ducos, F.; Formela, K.; Saeb, M.R. Thermal Decomposition Kinetics of Dynamically Vulcanized Polyamide 6–Acrylonitrile Butadiene Rubber–Halloysite Nanotube Nanocomposites. J. Appl. Polym. Sci. 2019, 136, 47483. [Google Scholar] [CrossRef]
- Braun, U.; Schartel, B.; Fichera, M.A.; Jäger, C.; Ja, C.; Jäger, C. Flame Retardancy Mechanisms of Aluminium Phosphinate in Combination with Melamine Polyphosphate and Zinc Borate in Glass-Fibre Reinforced Polyamide 6,6. Polym. Degrad. Stab. 2007, 92, 1528–1545. [Google Scholar] [CrossRef]
- Liu, C.; Wu, W.; Shi, Y.; Yang, F.; Liu, M.; Chen, Z.; Yu, B.; Feng, Y. Creating MXene/Reduced Graphene Oxide Hybrid towards Highly Fire Safe Thermoplastic Polyurethane Nanocomposites. Compos. Part B Eng. 2020, 203, 108486. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, P.; Shi, Y.; Rao, X.; Cai, S.; Fu, L.; Feng, Y.; Wang, L.; Zheng, X.; Yang, W. Enhanced Fire Safety of Rigid Polyurethane Foam via Synergistic Effect of Phosphorus/Nitrogen Compounds and Expandable Graphite. Molecules 2020, 25, 4741. [Google Scholar] [CrossRef]
- Liu, C.; Yao, A.; Chen, K.; Shi, Y.; Feng, Y.; Zhang, P.; Yang, F.; Liu, M.; Chen, Z. MXene Based Core-Shell Flame Retardant towards Reducing Fire Hazards of Thermoplastic Polyurethane. Compos. Part B Eng. 2021, 226, 109363. [Google Scholar] [CrossRef]
- Rybinski, P.; Janowska, G.; Helwig, M.; Dabrowski, W.; Majewski, K. Flammability of Butadiene-Acrylonitrile Rubbers. J. Therm. Anal. Calorim. 2004, 75, 249–256. [Google Scholar] [CrossRef]
- Regazzi, A.; Pucci, M.F.; Dumazert, L.; Gallard, B.; Buonomo, S.; Ravel, R.; Lopez-Cuesta, J.-M.M. Controlling the Distribution of Fire Retardants in Poly(Lactic Acid) by Fused Filament Fabrication in Order to Improve Its Fire Behaviour. Polym. Degrad. Stab. 2019, 163, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Schartel, B.; Hull, T.R. Development of Fire-Retarded Materials—Interpretation of Cone Calorimeter Data. Fire Mater. 2007, 31, 327–354. [Google Scholar] [CrossRef]
- Kashiwagi, T.; Mu, M.; Winey, K.; Cipriano, B.; Raghavan, S.R.; Pack, S.; Rafailovich, M.; Yang, Y.; Grulke, E.; Shields, J.; et al. Relation between the Viscoelastic and Flammability Properties of Polymer Nanocomposites. Polymer 2008, 49, 4358–4368. [Google Scholar] [CrossRef]
- Batistella, M.; Otazaghine, B.; Sonnier, R.; Caro-Bretelle, A.S.A.-S.A.-S.S.; Petter, C.; Lopez-Cuesta, J.-M.M. Fire Retardancy of Ethylene Vinyl Acetate/Ultrafine Kaolinite Composites. Polym. Degrad. Stab. 2014, 100, 54–62. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, R.; Iervolino, R.; Barbera, S. Changes of chemical structure and mechanical property levels during thermo-oxidative aging of NBR. Rubber Chem. Technol. 2013, 86, 591–603. [Google Scholar] [CrossRef]
Sample | PA2200 (wt.%) | Duomod DP5045 (wt.%) | Nipol 1411 (wt.%) | Zealloy 1422A (wt.%) |
---|---|---|---|---|
PA | 100 | 0 | 0 | 0 |
DP1 | 90 | 10 | 0 | 0 |
DP2 | 80 | 20 | 0 | 0 |
N1 | 90 | 0 | 10 | 0 |
N2 | 80 | 0 | 20 | 0 |
Z1 | 90 | 0 | 0 | 10 |
Z2 | 80 | 0 | 0 | 20 |
Sample | (°C) | (°C) | (°C) | (°C) | (°C) | Xc (%) |
---|---|---|---|---|---|---|
PA2200 | 153 | 179 | 26 | 149 | 190 | 21 |
DP1 | 155 | 182 | 27 | 145 | 187 | 20 |
DP2 | 156 | 184 | 28 | 152 | 190 | 16 |
N1 | 156 | 185 | 29 | 152 | 191 | 19 |
N2 | 154 | 182 | 28 | 150 | 188 | 15 |
Z1 | 154 | 184 | 30 | 149 | 189 | 19 |
Z2 | 153 | 183 | 30 | 149 | 188 | 12 |
Sample | Porosity (%) |
---|---|
PA | 4 |
DP1 | 5 |
DP2 | 6 |
N1 | 8 |
N2 | 12 |
Z1 | 4 |
Z2 | 6 |
Sample | T5% (°C) | T20% (°C) | T50% (°C) | Experimental Residue at 750 °C (%) | Theoretical Residue at 750 °C (%) |
---|---|---|---|---|---|
PA2200 | 406 | 438 | 461 | - | - |
Duomod DP5045 | 384 | 436 | 477 | 43 | - |
Nipol 1411 | 404 | 438 | 465 | 33 | - |
Zealloy 1422 | 402 | 438 | 465 | 25 | - |
DP1 | 404 | 435 | 451 | 3.9 | 4.2 |
DP2 | 421 | 440 | 453 | 10.6 | 8.4 |
N1 | 395 | 439 | 461 | 0.5 | 3.2 |
N2 | 392 | 444 | 465 | 4.4 | 6.4 |
Z1 | 413 | 439 | 456 | 3.7 | 2.5 |
Z2 | 403 | 445 | 465 | 3.7 | 5 |
Sample | TTI (s) | pHRR (kW/m²) | EHC (kJ/g) | THR (MJ/m²) | MARHE (kW/m²) | Residue (%) | FRI | COP (g/s) |
---|---|---|---|---|---|---|---|---|
PA2200 | 45 ± 8 | 1244 ± 150 | 32 ± 1 | 139 ± 4 | 518 ± 20 | - | 0.004 ± 0.0003 | |
DP1 | 35 ± 2 | 705 ± 54 | 33 ± 0.5 | 116 ± 7 | 434 ± 14 | - | 2.8 | 0.0022 ± 0.0002 |
DP2 | 40 ± 2 | 442 ± 25 | 31 ± 0.5 | 110 ± 10 | 313 ± 17 | - | 3.1 | 0.0015 ± 0.0002 |
N1 | 34 ± 5 | 1005 ± 78 | 32 ± 1 | 132 ± 9 | 491 ± 7 | - | 1 | 0.0028 ± 0.0005 |
N2 | 39 ± 2 | 920 ± 80 | 32 ± 1 | 118 ± 15 | 449 ± 74 | 1 | 1.4 | 0.0025 ± 0.0002 |
Z1 | 38 ± 8 | 1276 ± 141 | 33 ± 1 | 132 ± 9 | 557 ± 45 | - | 0.9 | 0.0022 ± 0.0006 |
Z2 | 41 ± 2 | 1013 ± 115 | 33 ± 1 | 124 ± 4 | 513 ± 90 | - | 1.2 | 0.0023 ± 0.0002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batistella, M.; Pucci, M.F.; Regazzi, A.; Lopez-Cuesta, J.-M.; Kadri, O.; Bordeaux, D.; Ayme, F. Fire Behavior of Polyamide 12/Rubber Formulations Made by Laser Sintering. Materials 2022, 15, 1773. https://doi.org/10.3390/ma15051773
Batistella M, Pucci MF, Regazzi A, Lopez-Cuesta J-M, Kadri O, Bordeaux D, Ayme F. Fire Behavior of Polyamide 12/Rubber Formulations Made by Laser Sintering. Materials. 2022; 15(5):1773. https://doi.org/10.3390/ma15051773
Chicago/Turabian StyleBatistella, Marcos, Monica Francesca Pucci, Arnaud Regazzi, José-Marie Lopez-Cuesta, Ouassila Kadri, David Bordeaux, and Florence Ayme. 2022. "Fire Behavior of Polyamide 12/Rubber Formulations Made by Laser Sintering" Materials 15, no. 5: 1773. https://doi.org/10.3390/ma15051773
APA StyleBatistella, M., Pucci, M. F., Regazzi, A., Lopez-Cuesta, J. -M., Kadri, O., Bordeaux, D., & Ayme, F. (2022). Fire Behavior of Polyamide 12/Rubber Formulations Made by Laser Sintering. Materials, 15(5), 1773. https://doi.org/10.3390/ma15051773