In Vitro Dissolution of Na-Ca-P-Oxynitrides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tested Materials
2.2. In Vitro Bioactivity Measurements
3. Results
3.1. Mass Change during the Dissolution in SBF and SEM Observations
3.2. Ion Concentrations and pH of SBF
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maheswaran, A.; Hirankumar, G.; Heller, N.; Karthickprabhu, S.; Kawamura, J. Structure, dielectric and bioactivity of P2O5–CaO–Na2O–B2O3 bioactive glass. Appl. Phys. A 2014, 117, 1323–1327. [Google Scholar] [CrossRef]
- Massera, J.; Fagerlund, S.; Hupa, L.; Hupa, M. Crystallization Mechanism of the Bioactive Glasses, 45S5 and S53P4. J. Am. Ceram. Soc. 2012, 95, 607–613. [Google Scholar] [CrossRef]
- Boccaccini, A.R.; Brauer, D.S.; Hupa, L. Bioactive Glasses: Fundamentals, Technology and Applications; Royal Society of Chemistry: London, UK, 2016. [Google Scholar]
- Fagerlund, S.; Hupa, L. Chapter 1. Melt-derived Bioactive Silicate Glasses. In Bioactive Glasses: Fundamentals, Technology and Applications; Royal Society of Chemistry: London, UK, 2016; pp. 1–26. [Google Scholar] [CrossRef]
- Westhauser, F.; Hohenbild, F.; Arango Ospina, M.; Schmitz, S.; Wilkesmann, S.; Hupa, L.; Moghaddam, A.; Boccaccini, A. Bioactive Glass (BG) ICIE16 Shows Promising Osteogenic Properties Compared to Crystallized 45S5-BG. Int. J. Mol. Sci. 2020, 21, 1639. [Google Scholar] [CrossRef] [Green Version]
- Nommeots-Nomm, A.; Hupa, L.; Rohanová, D.; Brauer, D. A review of acellular immersion tests on bioactive glasses–influence of medium on ion release and apatite formation. Int. J. Appl. Glass Sci. 2020, 11, 537–551. [Google Scholar] [CrossRef]
- Da Costa, Z.M.; Pontuschka, W.M.; Giehl, J.M.; Da Costa, C.R. ESR dosimeter based on P2O5–CaO–Na2O glass system. J. Non-Cryst. Solids 2006, 352, 3663–3667. [Google Scholar] [CrossRef]
- Carta, D.; Knowles, J.C.; Smith, M.E.; Newport, R.J. Synthesis and structural characterization of P2O5–CaO–Na2O sol–gel materials. J. Non-Cryst. Solids 2007, 353, 1141–1149. [Google Scholar] [CrossRef]
- Jones, J.R.; Sepulveda, P.; Hench, L.L. Dose-dependent behavior of bioactive glass dissolution. J. Biomed. Mater. Res. 2001, 58, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.R. Review of bioactive glass: From Hench to hybrids. Acta Biomater 2013, 9, 4457–4486. [Google Scholar] [CrossRef]
- Hench, L.L.; Splinter, R.J.; Allen, W.C.; Greenlee, T.K. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 1971, 5, 117–141. [Google Scholar] [CrossRef]
- Wójcik, N.A.; Ali, S.; Mielewczyk-Gryń, A.; Jonson, B. Two-step synthesis of niobium doped Na–Ca–(Mg)–P–Si–O glasses. J. Mater. Sci. 2021, 56, 7613–7625. [Google Scholar] [CrossRef]
- Arango-Ospina, M.; Hupa, L.; Boccaccini, A.R. Bioactivity and dissolution behavior of boron-containing bioactive glasses under static and dynamic conditions in different media. Biomed. Glasses 2019, 5, 124–139. [Google Scholar] [CrossRef]
- Sinitsyna, P.; Karlström, O.; Hupa, L. In vitro dissolution of bioactive glass S53P4 microspheres. J. Am. Ceram. Soc. 2021. [Google Scholar] [CrossRef]
- Fagerlund, S.; Ek, P.; Hupa, L.; Hupa, M. Dissolution Kinetics of a Bioactive Glass by Continuous Measurement. J. Am. Ceram. Soc. 2012, 95, 3130–3137. [Google Scholar] [CrossRef]
- Abou Neel, E.A.; Pickup, D.M.; Valappil, S.P.; Newport, R.J.; Knowles, J.C. Bioactive functional materials: A perspective on phosphate-based glasses. J. Mater. Chem. 2009, 19, 690–701. [Google Scholar] [CrossRef] [Green Version]
- Devi, A.G.; Rajendran, V.; Rajendran, N. Ultrasonic characterisation of calcium phosphate glasses and glass-ceramics with addition of TiO2. Int. J. Eng. Sci. Technol. 2010, 2, 2483–2490. [Google Scholar]
- Thonglem, S.; Pengpat, K.; Rujijanagul, G.; Eitssayeam, S.; Punyanitya, S.; Tunkasiri, T. Effects of CaO on Properties of P2O5-CaO-Na2O Glasses and Glass Ceramics. J. Met. Mater. Miner. 2010, 20, 173–177. [Google Scholar]
- Ahmed, I.; Lewis, M.; Olsen, I.; Knowles, J.C. Phosphate glasses for tissue engineering: Part 1. Processing and characterisation of a ternary-based P2O5-CaO-Na2O glass system. Biomaterials 2004, 25, 491–499. [Google Scholar] [CrossRef]
- Ahmed, I.; Lewis, M.; Olsen, I.; Knowles, J.C. Phosphate glasses for tissue engineering: Part 2. Processing and characterisation of a ternary-based P2O5-CaO-Na2O glass fibre system. Biomaterials 2004, 25, 501–507. [Google Scholar] [CrossRef]
- Franks, K.; Abrahams, I.; Georgiou, G.; Knowles, J.C. Investigation of thermal parameters and crytallisation in a ternary CaO-Na2O-P2O5-based glass system. Biomaterials 2001, 22, 497–501. [Google Scholar] [CrossRef]
- Uo, M.; Mizuno, M.; Kuboki, Y.; Makishima, A.; Watari, F. Properties and cytotoxicity of water soluble Na2O-CaO-P2O5 glasses. Biomaterials 1998, 19, 2277–2284. [Google Scholar] [CrossRef]
- Knowles, J.C. Phosphate based glasses for biomedical applications. J. Mater. Chem. 2003, 13, 2395–2401. [Google Scholar] [CrossRef]
- Wójcik, N.A.; Jonson, B.; Möncke, D.; Palles, D.; Kamitsos, E.I.; Ghassemali, E.; Seifeddine, S.; Eriksson, M.; Ali, S. Influence of synthesis conditions on glass formation, structure and thermal properties in the Na2O-CaO-P2O5 system doped with Si3N4 and Mg. J. Non-Cryst. Solids 2018, 494, 66–77. [Google Scholar] [CrossRef]
- Reidmeyer, M.R.; Day, D.E. Phosphorus Oxynitride Glasses. J. Non-Cryst. Solids 1995, 181, 201–214. [Google Scholar] [CrossRef]
- Das, T. Oxynitride glasses-An overview. Bull. Mater. Sci. 2000, 23, 499–507. [Google Scholar] [CrossRef] [Green Version]
- Maeda, H.; Miyajima, T.; Lee, S.; Obata, A.; Ueda, K.; Narushima, T.; Kasuga, T. Preparation of calcium pyrophosphate glass-ceramics containing Nb2O5. J. Ceram. Soc. Jpn. 2014, 122, 122–124. [Google Scholar] [CrossRef] [Green Version]
- Obata, A.; Takahashi, Y.; Miyajima, T.; Ueda, K.; Narushima, T.; Kasuga, T. Effects of Niobium Ions Released from Calcium Phosphate Invert Glasses Containing Nb2O5 on Osteoblast-Like Cell Functions. ACS Appl. Mater. Interfaces 2012, 4, 5684–5690. [Google Scholar] [CrossRef]
- Lee, I.-H.; Shin, S.-H.; Foroutan, F.; Lakhkar, N.J.; Gong, M.-S.; Knowles, J.C. Effects of magnesium content on the physical, chemical and degradation properties in a MgO−CaO−Na2O−P2O5 glass system. J. Non-Cryst. Solids 2013, 363, 57–63. [Google Scholar] [CrossRef]
- Vallet-Regi, M.; Salinas, A.J.; Roman, J.; Gil, M. Effect of magnesium content on the in vitro bioactivity of CaO-MgO-SiO2-P2O5 sol-gel glasses. J. Mater. Chem. 1999, 9, 515–518. [Google Scholar] [CrossRef]
- Kokubo, T. Bioactive Glass-Ceramics-Properties and Applications. Biomaterials 1991, 12, 155–163. [Google Scholar] [CrossRef]
- LeGeros, R.Z. Properties of osteoconductive biomaterials: Calcium phosphates. Clin. Orthop. Relat. Res. 2002, 395, 81–98. [Google Scholar] [CrossRef]
- Sharafat, A.; Grins, J.; Esmaeilzadeh, S. Glass-forming region in the Ca–Si–O–N system using CaH2 as Ca source. J. Eur. Ceram. Soc. 2008, 28, 2659–2664. [Google Scholar] [CrossRef]
- Sharafat, A.; Grins, J.; Esmaeilzadeh, S. Properties of high nitrogen content mixed alkali earth oxynitride glasses (AExCa1−x)1.2(1)SiO1.9(1)N0.86(6), AE=Mg, Sr, Ba. J. Non-Cryst. Solids 2009, 355, 1259–1263. [Google Scholar] [CrossRef]
- Sharafat, A.; Forslund, B.; Grins, J.; Esmaeilzadeh, S. Formation and properties of nitrogen-rich strontium silicon oxynitride glasses. J. Mater. Sci. 2008, 44, 664–670. [Google Scholar] [CrossRef]
- Ali, S.; Jonson, B. Glasses in the Ba-Si-O-N System. J. Am. Ceram. Soc. 2011, 94, 2912–2917. [Google Scholar] [CrossRef]
- Wójcik, N.A.; Jonson, B.; Möncke, D.; Kamitsos, E.I.; Segawa, H.; Karczewski, J.; Ali, S. The effect of nitrogen on the structure and thermal properties of beryllium-containing Na-(Li)-Si-O-N glasses. J. Non-Cryst. Solids 2019, 522, 119585. [Google Scholar] [CrossRef]
- Clupper, D.C.; Mecholsky, J.J.; LaTorre, G.P.; Greenspan, D.C. Bioactivity of tape cast and sintered bioactive glass-ceramic in simulated body fluid. Biomaterials 2002, 23, 2599–2606. [Google Scholar] [CrossRef]
- Miola, M.; Verné, E.; Ciraldo, F.E.; Cordero-Arias, L.; Boccaccini, A.R. Electrophoretic Deposition of Chitosan/45S5 Bioactive Glass Composite Coatings Doped with Zn and Sr. Front. Bioeng. Biotechnol. 2015, 3, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Meng, G.; Wang, S.; Wu, F.; Huang, W.; Gu, Z. Zn and Sr incorporated 64S bioglasses: Material characterization, in-vitro bioactivity and mesenchymal stem cell responses. Mater. Sci. Eng. C 2015, 52, 242–250. [Google Scholar] [CrossRef] [PubMed]
- El-Meliegy, E.; Farag, M.M.; Knowles, J.C. Dissolution and drug release profiles of phosphate glasses doped with high valency oxides. J. Mater. Sci. Mater. Med. 2016, 27, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Kheshen, A.A.; Khaliafa, F.A.; Saad, E.A.; Elwan, R.L. Effect of Al2O3 addition on bioactivity, thermal and mechanical properties of some bioactive glasses. Ceram. Int. 2008, 34, 1667–1673. [Google Scholar] [CrossRef]
- Jeznach, O.; Gajc, M.; Korzeb, K.; Kłos, A.; Orliński, K.; Stępień, R.; Krok-Borkowicz, M.; Rumian, Ł.; Pietryga, K.; Reczyńska, K.; et al. New calcium-free Na2O–Al2O3–P2O5 bioactive glasses with potential applications in bone tissue engineering. J. Am. Ceram. Soc. 2018, 101, 602–611. [Google Scholar] [CrossRef]
- Ohtsuki, C.; Kokubo, T.; Yamauro, T. Compositional dependence of bioactivity of glasses in the system CaO-SiO2-Al2O3: Itsin vitro evaluation. J. Mater. Sci. 1992, 3, 119–125. [Google Scholar] [CrossRef]
- Dziadek, M.; Zagrajczuk, B.; Menaszek, E.; Cholewa-Kowalska, K. A new insight into in vitro behaviour of poly(ε-caprolactone)/bioactive glass composites in biologically related fluids. J. Mater. Sci. 2018, 53, 3939–3958. [Google Scholar] [CrossRef] [Green Version]
- Shin, K.; Jayasuriya, A.C.; Kohn, D.H. Effect of ionic activity products on the structureand composition of mineral self assembled onthree-dimensional poly(lactide-co-glycolide) scaffolds. J. Biomed. Mater. Res. A 2007, 83, 1076–1086. [Google Scholar] [CrossRef] [Green Version]
- Baranowska, A.; Leśniak, M.; Kochanowicz, M.; Żmojda, J.; Miluski, P.; Dorosz, D. Crystallization Kinetics and Structural Properties of the 45S5 Bioactive Glass and Glass-Ceramic Fiber Doped with Eu3+. Materials 2020, 13, 1281. [Google Scholar] [CrossRef] [Green Version]
- Tilocca, A.; Cormack, A. Structural Effects of Phosphorus Inclusion in Bioactive Silicate Glasses. J. Phys. Chem. B 2007, 111, 14256–14264. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J.H.; Magalhães, A.; Mazali, I.O.; Bertran, C.A. Effect of Niobium Oxide on the Structure and Properties of Melt-Derived Bioactive Glasses. J. Am. Ceram. Soc. 2014, 97, 3843–3852. [Google Scholar] [CrossRef]
- Silva, M.; Ramirez, C.; Granjeiro, J.; Rossi, A. In Vitro Assessment of New Niobium Phosphate Glasses and Glass Ceramics. Key Eng. Mater. 2008, 361, 229–232. [Google Scholar]
Element | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ID | Na | K | Ca | Mg | Al | Si | P | Nb | O | N | Ca/P |
Matrix glass | |||||||||||
g0 | 18.1 | 0.4 | 5 | - | 0.3 | - | 16.8 | - | 59.5 | - | 0.30 |
Reference glass | |||||||||||
g1 | 17.8 | 0.4 | 4.5 | - | 0.2 | 0.4 | 17.3 | - | 59.4 | - | 0.26 |
Series I xSi3N4-(100-x)(40Na2O-20CaO-40P2O5) | |||||||||||
g2 | 18.3 | 0.3 | 4.5 | - | 0.3 | 0.2 | 17.5 | - | 58.1 | 0.8 | 0.26 |
g3 | 17.6 | 0.2 | 4.5 | - | 0.2 | 0.9 | 17.4 | - | 58.5 | 0.8 | 0.26 |
g4 | 17.1 | 0.2 | 4.6 | - | 0.2 | 1.3 | 16.6 | - | 58 | 2.1 | 0.28 |
Series II xSi3N4-1Mg-(99-x)(40Na2O-20CaO-40P2O5) | |||||||||||
g5 | 17.3 | 1.7 | 4.5 | 0.3 | 0.2 | 0.5 | 14.6 | 0.7 | 58.7 | 1.7 | 0.31 |
gc6 | 19.6 | 3.1 | 5.4 | 0.4 | 0.1 | 1.8 | 18.2 | 1.4 | 44.7 | 5.3 | 0.30 |
gc7 | 16.9 | 1.4 | 4.6 | 0.4 | 0.2 | 2 | 15.4 | 0.5 | 56.7 | 2.1 | 0.30 |
Series III xMg-(100-x)[1Si3N4-99(40Na2O-20CaO-40P2O5)] | |||||||||||
g8 | 20.5 | 0.5 | 4.7 | 0.7 | 0.2 | 0.8 | 16 | 0.3 | 54.9 | 1.4 | 0.29 |
gc9 | 19.6 | 0.4 | 4.6 | 0.9 | 0.2 | 0.8 | 16.3 | 0.4 | 55.4 | 1.4 | 0.28 |
gc10 | 13.9 | 4.2 | 8.3 | 1.3 | 3.7 | 1.6 | 17.6 | 1.8 | 43.1 | 4.6 | 0.24 |
gc11 | 14.4 | 4.7 | 8.1 | 1.6 | 4.3 | 1.1 | 17.2 | 1.8 | 42.9 | 3.7 | 0.27 |
Step of Immersion | Immersion Time (days) | Matrix Glass | Reference Glass | Series I Samples | Series II Samples | Series III Samples | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
g0 | g1 | g2 | g3 | g4 | g5 | gc6 | gc7 | g8 | gc9 | gc10 | gc11 | ||
Mass loss after immersion in SBF (%) | |||||||||||||
Initial stage | 3 | 5 | −2 | 13 | 8 | −7 | 12 | 9 | 25 | 13 | 16 | 15 | 15 |
Long term | 7 | 7 | 1 | 13 | 23 | −5 | 4 | 3 | 12 | 2 | 6 | 3 | 11 |
Mean mass loss calculated per day (% day−1) | |||||||||||||
Initial stage | 3 | 1.67 | −0.67 | 4.33 | 2.67 | −2.33 | 4 | 3 | 8.33 | 4.33 | 5.33 | 5 | 5 |
Long term | 7 | 1.40 | 0.14 | 1.86 | 3.29 | −0.71 | 0.57 | 0.42 | 1.71 | 0.28 | 0.86 | 0.43 | 1.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wójcik, N.A.; Sinitsyna, P.; Ali, S.; Hupa, L.; Jonson, B. In Vitro Dissolution of Na-Ca-P-Oxynitrides. Materials 2021, 14, 7425. https://doi.org/10.3390/ma14237425
Wójcik NA, Sinitsyna P, Ali S, Hupa L, Jonson B. In Vitro Dissolution of Na-Ca-P-Oxynitrides. Materials. 2021; 14(23):7425. https://doi.org/10.3390/ma14237425
Chicago/Turabian StyleWójcik, Natalia Anna, Polina Sinitsyna, Sharafat Ali, Leena Hupa, and Bo Jonson. 2021. "In Vitro Dissolution of Na-Ca-P-Oxynitrides" Materials 14, no. 23: 7425. https://doi.org/10.3390/ma14237425
APA StyleWójcik, N. A., Sinitsyna, P., Ali, S., Hupa, L., & Jonson, B. (2021). In Vitro Dissolution of Na-Ca-P-Oxynitrides. Materials, 14(23), 7425. https://doi.org/10.3390/ma14237425