Effects of Fiber Diameter on Crack Resistance of Asphalt Mixtures Reinforced by Basalt Fibers Based on Digital Image Correlation Technology
Abstract
:1. Introduction
2. Materials and Test Method
2.1. Raw Materials
2.1.1. Asphalt
2.1.2. Fiber
2.2. Gradation Design of Asphalt Mixture
2.3. Test Method
2.3.1. Low Temperature Trabecular Bending Test
2.3.2. IDEAL Cracking Test
2.3.3. SCB Test
2.3.4. DIC Method Introduction
3. Results and Discussion
3.1. Low Temperature Trabecular Bending Test
3.2. IDEAL Cracking Test
3.3. SCB Test
3.4. DIC Analysis
3.4.1. Full-Field Displacement
3.4.2. Full-Field Strain
3.4.3. Fracture Feature Analysis
3.5. Index Correlation Analysis
4. Conclusions
- Basalt fiber can improve the crack resistance of the AC-13 asphalt mixture. Among them, basalt fiber with a diameter of 7 μm has the most prominent enhancement in the crack resistance, while the reinforcing effect of basalt fibers with diameters of 13 μm and 25 μm is not much different, and both are inferior to 7 μm fibers;
- Under the same dosage, the basalt fiber with a diameter of 7 μm has the best enhancement effect on the crack resistance of AC-13 mixture;
- Basalt fiber asphalt mixture has slower crack propagation rate than asphalt mixture without fiber;
- The 1/FI of the SCB test shows a better correlation with the 1/V and 1/FT values of DIC test results, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, F.; Li, R.; Amirkhanian, S.; Yuan, J. Rutting-resistance investigation of alternative polymerized asphalt mixtures. J. Mater. Civ. Eng. 2018, 30, 04018116. [Google Scholar] [CrossRef]
- Li, C.; Wang, L.; Wang, X. Crack and crack growth behavior analysis of asphalt mixtures based on the digital speckle correlation method. Constr. Build. Mater. 2017, 147, 227–238. [Google Scholar] [CrossRef]
- Wu, B.; Luo, C.; Pei, Z.; Xia, J.; Chen, C.; Kang, A. Effect of different polymer modifiers on the long-term rutting and cracking resistance of asphalt mixtures. Materials 2021, 14, 3359. [Google Scholar] [CrossRef]
- Cai, X.; Chen, L.; Zhang, R.; Huang, W.; Wu, K.; Ye, X. Estimation of shear modulus of asphalt mixture based on the shear strength of the aggregate interface. Constr. Build. Mater. 2020, 248, 118695. [Google Scholar] [CrossRef]
- Moreno-Navarro, F.; Sol-Sánchez, M.; Rubio-Gámez, M.C.; Segarra-Martínez, M. The use of additives for the improvement of the mechanical behavior of high modulus asphalt mixes. Constr. Build. Mater. 2014, 70, 65–70. [Google Scholar] [CrossRef]
- Wang, S.; Huang, W. Investigation of aging behavior of terminal blend rubberized asphalt with SBS polymer. Constr. Build. Mater. 2021, 267, 120870. [Google Scholar] [CrossRef]
- Cong, L.; Peng, J.; Guo, Z.; Wang, Q. Evaluation of fatigue cracking in asphalt mixtures based on surface energy. Mater. Civ. Eng. 2017, 29, 4015003. [Google Scholar] [CrossRef]
- Wang, S.; Huang, W.; Kang, A. Laboratory evaluation of the properties of high-cured crumb rubber modified asphalt containing sulfur and polymer after the oxidative aging procedure. Constr. Build. Mater. 2021, 304, 124611. [Google Scholar] [CrossRef]
- Liu, G.; Yang, T.; Li, J.; Jia, Y.; Zhao, Y.; Zhang, J. Effects of aging on rheological properties of asphalt materials and asphalt-filler interaction ability. Constr. Build. Mater. 2018, 168, 501–511. [Google Scholar] [CrossRef]
- Tanzadeh, R.; Tanzadeh, J.; Honarmand, M.; Tahami, S.A. Experimental study on the effect of basalt and glass fibers on behavior of open-graded friction course asphalt modified with nano-silica. Constr. Build. Mater. 2019, 212, 467–475. [Google Scholar] [CrossRef]
- Li, H.; Yu, J.; Wu, S.; Liu, Q.; Wu, Y.; Xu, H.; Li, Y. Effect of moisture conditioning on mechanical and healing properties of inductive asphalt concrete. Constr. Build. Mater. 2020, 241, 118139. [Google Scholar] [CrossRef]
- Ma, T.; Geng, L.; Ding, X.; Zhang, D.; Huang, X. Experimental study of deicing asphalt mixture with anti-icing additives. Constr. Build. Mater. 2016, 127, 653–662. [Google Scholar] [CrossRef]
- Chai, C.; Cheng, Y.; Zhang, Y.; Zhu, B.; Liu, H. Mechanical properties of crumb rubber and basalt fiber composite modified porous asphalt concrete with steel slag as aggregate. Polymers 2020, 12, 2552. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Jia, A.; Feng, C.; Liu, W.; Fu, T.; Qiu, R. Preparation and mechanical properties of asphalt mixtures reinforced by modified bamboo fibers. Constr. Build. Mater. 2021, 286, 122984. [Google Scholar] [CrossRef]
- Ziari, H.; Moniri, A. Laboratory evaluation of the effect of synthetic Polyolefin-glass fibers on performance properties of hot mix asphalt. Constr. Build. Mater. 2019, 213, 459–468. [Google Scholar] [CrossRef]
- Pei, J.; Guo, Q.; Pang, J. Experimental research on low temperature crack resistance of steel fiber asphalt concrete. In Proceedings of the 2016 5th International Conference on Sustainable Energy and Environment Engineering (ICSEEE 2016), Zhuhai, China, 12–13 November 2016; volume 63, pp. 145–150. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Huang, C.; Wang, J.; Gao, D. Experimental analysis on flexural-tensile performance of polyester fiber asphalt concrete. Ann. Chim-Sci. Mat. 2019, 43, 81–88. [Google Scholar] [CrossRef]
- Wu, B.; Wu, X.; Xiao, P.; Chen, C.; Xia, J.; Lou, K. Evaluation of the long-term performances of sma-13 containing different fibers. Appl. Sci. 2021, 11, 5145. [Google Scholar] [CrossRef]
- Cao, H. Experimental investigation on the static and impact behaviors of basalt fiber-reinforced concrete. Open Civ. Eng. J. 2017, 11, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.; Li, R.; Lu, S.; Bi, Y.; He, H. Evaluation of the effect of fiber type, length, and content on asphalt properties and asphalt mixture performance. Materials 2020, 13, 1556. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; He, J.; Mosallam, A.S.; Li, C.; Xin, H. The effects of fiber length and volume on material properties and crack resistance of basalt fiber reinforced concrete (BFRC). Adv. Mater. Sci. Eng. 2019, 2019, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Teltayev, B.B.; Rossi, C.O.; Izmailova, G.G.; Amirbayev, E.D.; Elshibayev, A.O. Evaluating the effect of asphalt binder modification on the low-temperature cracking resistance of hot mix asphalt. Case Stud. Constr. Mater. 2019, 11, e00238. [Google Scholar] [CrossRef]
- Gu, F.; Chen, C.; Yin, F.; West, R.C.; Taylor, A. Development of a new cracking index for asphalt mixtures using indirect tensile creep and strength test. Constr. Build. Mater. 2019, 225, 465–475. [Google Scholar] [CrossRef]
- Ozer, H.; Al-Qadi, I.L.; Lambros, J.; El-Khatib, A.; Singhvi, P.; Doll, B. Development of the fracture-based flexibility index for asphalt concrete cracking potential using modified semi-circle bending test parameters. Constr. Build. Mater. 2016, 115, 390–401. [Google Scholar] [CrossRef]
- Ha, N.S.; Le, V.T.; Goo, N.S. Investigation of punch resistance of the allomyrira dichtoloma beetle forewing. J. Bionic Eng. 2018, 15, 57–68. [Google Scholar] [CrossRef]
- Ha, N.S.; Le, V.T.; Goo, N.S.; Kim, N.S. Thermal strain measurement of austin stainless steel (SS304) during a heating-cooling process. Int. J. Aeronaut. Space 2017, 18, 206–214. [Google Scholar] [CrossRef]
- Xing, C.; Tan, Y.; Liu, X.; Anupam, K.; Scarpas, T. Research on local deformation property of asphalt mixture using digital image correlation. Constr. Build. Mater. 2017, 140, 416–423. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R. Generalized gradient based digital image correlation method for displacement with subpixel accuracy. Appl. Mech. Mater. 2014, 2796, 168–172. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, H.; Gao, Y.; Jiao, Y.; Liu, F.; Dong, Z. Investigation of the low-temperature properties and cracking resistance of fiber-reinforced asphalt concrete using the DIC technique. Eng. Fract. Mech. 2020, 229, 106951. [Google Scholar] [CrossRef]
- Buttlar, W.G.; Hill, B.C.; Kim, Y.R.; Kutay, M.E.; Millien, A.; Montepara, A.; Paulino, G.H.; Petit, C.; Pop, I.O.; Romeo, E.; et al. Digital image correlation techniques to investigate strain fields and cracking phenomena in asphalt materials. Mater. Struct. Constr. 2014, 47, 1373–1390. [Google Scholar] [CrossRef]
- Ministry of Transport of the People’s Republic of China. Test Standard Methods of Bitumen and Bituminous Mixtures for Highway Engineering; (JTG E20-2011); China Communications Press: Beijing, China, 2011. [Google Scholar]
- Ministry of Transport of the People’s Republic of China. Technical Specification for Construction of Highway Asphalt Pavements; (JTG F40-2004); China Communications Press: Beijing, China, 2004. [Google Scholar]
- Lou, K.; Xiao, P.; Kang, A.; Wu, Z.; Lu, P. Suitability of fiber lengths for hot mix asphalt with different nominal maximum aggregate size: A pilot experimental investigation. Materials 2020, 13, 3685. [Google Scholar] [CrossRef]
- Zhou, F.; Im, S.; Sun, L.; Scullion, T. Development of an IDEAL cracking test for asphalt mix design and QC/QA. Road Mater. Pavement Des. 2017, 86, 549–577. [Google Scholar] [CrossRef]
- AASHTO TP 105-13. Standard Method of Test for Determining the Fracture Energy of Asphalt Mixtures Using the Semicircular Bend Geometry (SCB); American Association of State Highway and Transportation Officials: Washington, DC, USA, 2020. [Google Scholar]
- Jin, T.; Ha, N.S.; Le, V.T.; Goo, N.S.; Jeon, H.C. Thermal buckling measurement of a laminated composite plate under a uniform temperature distribution using the digital image correlation method. Compos. Struct. 2015, 123, 420–429. [Google Scholar] [CrossRef]
- Du, Z.; Jiang, C.; Yuan, J.; Xiao, F.; Wang, J. Low temperature performance characteristics of polyethylene modified asphalts—A review. Constr. Build. Mater. 2020, 264, 120704. [Google Scholar] [CrossRef]
- Mishra, V.; Singh, D.; Habal, A. Investigating the condition number approach to select probe liquids for evaluating surface free energy of bitumen. Int. J. Pavement Res. Technol. 2020, 13, 10–19. [Google Scholar] [CrossRef]
- Habal, A.; Singh, D. Effects of warm mix asphalt additives on bonding potential and failure pattern of asphalt-aggregate systems using strength and energy parameters. Int. J. Pavement Eng. 2021, 22, 467–479. [Google Scholar] [CrossRef]
Test Indexes | Requirements | Results | Experiment Method | |
---|---|---|---|---|
Penetration (25 °C)/0.1 mm | 60~80 | 71 | T0604 | |
Softening point/°C | ≮55 | 86 | T0606 | |
Ductility (5 cm/min, 15 °C)/cm | ≮30 | 48 | T0605 | |
Penetration Index (PI) | −0.4~1.0 | 0.5 | T0604 | |
Segregation (soften the spread)/°C | ≯2.5 | 1.4 | T0661 | |
Recovery of elasticity (25 °C)/% | ≮65 | 76 | T0662 | |
RTFOT residue | Quality change/% | ±1.0 | −0.08 | T0610 |
Penetration ratio/% | ≮60 | 86 | T0604 | |
15 °C residual ductility/cm | ≮20 | 37 | T0605 |
Diameter/μm | Fracture Strength/MPa | Water Content/% |
---|---|---|
7 | 3200 | 0.1 |
13 | 2218 | 0.1 |
25 | 1940 | 0.1 |
Numbering | Gradation Type | Fiber Stabilizer | Dosage/% | OAC/% | Abbreviation |
---|---|---|---|---|---|
1 | AC-13 | / | / | 4.8 | AC-13 |
2 | AC-13 | BF (6 mm, 7 μm) | 0.3 | 5.1 | AC-13 BF-7 μm |
3 | AC-13 | BF (6 mm, 13 μm) | 0.3 | 5.0 | AC-13 BF-13 μm |
4 | AC-13 | BF (6 mm, 25 μm) | 0.3 | 4.9 | AC-13 BF-25 μm |
Code | Neat | BF-7 μm | BF-13 μm | BF-25 μm |
---|---|---|---|---|
V (mm/s) | 3.251 | 2.459 | 2.711 | 2.843 |
FT (MPa·m) | 1.759 | 2.232 | 2.011 | 1.896 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, Z.; Lou, K.; Kong, H.; Wu, B.; Wu, X.; Xiao, P.; Qi, Y. Effects of Fiber Diameter on Crack Resistance of Asphalt Mixtures Reinforced by Basalt Fibers Based on Digital Image Correlation Technology. Materials 2021, 14, 7426. https://doi.org/10.3390/ma14237426
Pei Z, Lou K, Kong H, Wu B, Wu X, Xiao P, Qi Y. Effects of Fiber Diameter on Crack Resistance of Asphalt Mixtures Reinforced by Basalt Fibers Based on Digital Image Correlation Technology. Materials. 2021; 14(23):7426. https://doi.org/10.3390/ma14237426
Chicago/Turabian StylePei, Zhaohui, Keke Lou, Heyu Kong, Bangwei Wu, Xing Wu, Peng Xiao, and Yanjuan Qi. 2021. "Effects of Fiber Diameter on Crack Resistance of Asphalt Mixtures Reinforced by Basalt Fibers Based on Digital Image Correlation Technology" Materials 14, no. 23: 7426. https://doi.org/10.3390/ma14237426
APA StylePei, Z., Lou, K., Kong, H., Wu, B., Wu, X., Xiao, P., & Qi, Y. (2021). Effects of Fiber Diameter on Crack Resistance of Asphalt Mixtures Reinforced by Basalt Fibers Based on Digital Image Correlation Technology. Materials, 14(23), 7426. https://doi.org/10.3390/ma14237426