Advancing towards a Practical Magnesium Ion Battery
Abstract
:1. Introduction
2. High-Voltage Electrode
2.1. Chalcogenides
2.2. Spinel-Type Oxides
2.3. Molybdenum Oxides
2.4. Vanadium Compounds
2.5. Phosphates
3. Low-Voltage Electrode
3.1. Mg Metal
3.2. Mg-Alloys
3.3. Organic Compounds
- (i)
- Low cost and sustainability.
- (ii)
- The gravimetric capacity, based on light elements, could be very high, compared to compounds containing on heavier elements.
- (iii)
- The mobility of magnesium ion in the organic electrodes could be very high.
- (iv)
- Possibility of fabricating flexible batteries and pouch cells.
- (v)
- The energy storage behavior can be based on dual-ion mechanism [100]. Both the cation (Mg2+) and the anion (e.g., ClO4−) can attach and depart from organic electrodes.
3.4. Others Negative Electrodes
4. Solid Electrolyte
- (i)
- High ionic conductivity of Mg-ion (>10−4 S cm−1) at room temperature and/or at moderate temperatures.
- (ii)
- No electronic conductivity.
- (iii)
- Chemical stability within a wide range of temperatures.
- (iv)
- Electrochemical stability in a wide voltage window. The HOMO and LUMO levels must be adjusted at the interface electrolyte/electrode.
- (v)
- Good solid/solid interface properties and good adherence to the electrodes. The poor contacts and the cracking induce current restrictions.
- (vi)
- Low cost.
- (vii)
- Environmentally sustainable.
4.1. Polymer Electrolytes
4.2. Phosphates
4.3. Chalcogenides
4.4. Borohydride
4.5. Metal-Organic Frameworks
4.6. Other Solid Electrolytes
5. Summary and Perspectives
- (i)
- Solid electrolytes for avoiding the formation of a Mg-blocking layer on the surface of Mg foil electrode and increasing the safety of the rechargeable batteries.
- (ii)
- Exploring new materials and structures for magnesium solid electrolytes. For example, materials with the perovskite-type structure should be explored.
- (iii)
- Experimental measurements on magnesium mobility in the solid electrolytes.
- (iv)
- Theoretical calculation on accommodation and diffusion of magnesium in solid electrolytes.
- (v)
- Enhancement of the ionic diffusion of the solid electrolyte, for example by reducing the film thickness, creating vacancies and doping.
- (vi)
- Studying the electrochemistry of the most promising electrode materials, previously studied in liquid electrolytes, in new solid electrolytes.
- (vii)
- Developing new methods to synthesize polymer electrolytes.
- (viii)
- Integration of positive and negative electrode, and solid electrolyte, including the compatibility between the electrode and the solid electrolyte and the interface resistance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Chen, S.; Zhao, D.; Chen, L.; Liu, G.; Ding, Y.; Cao, Y.; Chen, Z. Emerging intercalation cathode materials for multivalent metal-ion batteries: Status and challenges. Small Struct. 2021, 2, 2100082. [Google Scholar] [CrossRef]
- Ramasubramanian, B.; Reddy, M.V.; Zaghib, K.; Armand, M.; Ramakrishna, S. Growth mechanism of micro/nano metal dendrites and cumulative strategies for countering its impacts in metal ion batteries: A review. Nanomaterials 2021, 11, 2476. [Google Scholar] [CrossRef]
- Tkacz-Smiech, K.; Kolezynski, A.; Ptak, W.S. Pauling’s electrostatic rule for partially covalent/partially ionic crystals. J. Phys. Chem. Solids 2000, 61, 1847–1853. [Google Scholar] [CrossRef]
- Levi, E.; Levi, M.D.; Chasid, O.; Aurbach, D. A review on the problems of the solid state ions diffusion in cathodes for rechargeable Mg batteries. J. Electroceram. 2009, 22, 13–19. [Google Scholar] [CrossRef]
- Rong, Z.; Malik, R.; Canepa, P.; Sai Gautam, G.; Liu, M.; Jain, A.; Persson, K.; Ceder, G. Materials design rules for multivalent ion mobility in intercalation structures. Chem. Mater. 2015, 27, 6016–6021. [Google Scholar] [CrossRef]
- Yoo, H.D.; Shterenberg, I.; Gofer, Y.; Gershinsky, G.; Pour, N.; Aurbach, D. Mg rechargeable batteries: An on-going challenge. Energy Environ. Sci. 2013, 6, 2265–2279. [Google Scholar] [CrossRef]
- Muldoon, J.; Bucur, C.B.; Oliver, A.G.; Sugimoto, T.; Matsui, M.; Kim, H.S.; Allred, G.D.; Zajicek, J.; Kotani, Y. Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ. Sci. 2012, 5, 5941–5950. [Google Scholar] [CrossRef]
- Keyzer, E.N.; Glass, H.F.J.; Liu, Z.; Bayley, P.M.; Dutton, S.E.; Grey, C.P.; Wright, D.S. Mg(PF6)2-Based electrolyte systems: Understanding electrolyte−electrode interactions for the development of Mg-ion batteries. J. Am. Chem. Soc. 2016, 138, 8682–8685. [Google Scholar] [CrossRef]
- Shao, Y.; Rajput, N.N.; Hu, J.; Hu, M.; Liu, T.; Wei, Z.; Gu, M.; Deng, X.; Xu, S.; Han, K.S.; et al. Nanocomposite polymer electrolyte for rechargeable magnesium batteries. Nano Energy 2015, 12, 750–759. [Google Scholar] [CrossRef] [Green Version]
- Kitada, A.; Kang, Y.; Uchimoto, Y.; Murase, K. Room-Temperature electrodeposition of mg metal from amide salts dissolved in glyme-ionic liquid mixture. J. Electrochem. Soc. 2014, 161, D102. [Google Scholar] [CrossRef] [Green Version]
- Zhan, Y.; Zhang, W.; Lei, B.; Liu, H.; Li, W. Recent development of Mg ion solid electrolyte. Front. Chem. 2020, 8, 125. [Google Scholar] [CrossRef]
- Kundu, S.; Solomatin, N.; Kauffmann, Y.; Kraytsberg, A.; Ein-Eli, Y. Revealing and excluding the root cause of the electronic conductivity in Mg-ion MgSc2Se4 solid electrolyte. Appl. Mater. Today 2021, 23, 100998. [Google Scholar] [CrossRef]
- Dominko, R.; Bitenc, J.; Berthelot, R.; Gauthier, M.; Pagot, G.; Di Noto, V. Magnesium batteries: Current picture and missing pieces of the puzzle. J. Power Sources 2020, 478, 229027. [Google Scholar] [CrossRef]
- Li, D.; Yuan, Y.; Liu, J.; Fichtner, M.; Pan, F. A review on current anode materials for rechargeable Mg batteries. J. Magnes. Alloy 2020, 8, 963–979. [Google Scholar] [CrossRef]
- Ponrouch, A.; Bitenc, J.; Dominko, R.; Lindahl, N.; Johansson, P.; Palacin, M.R. Multivalent rechargeable batteries. Energy Storage Mater. 2019, 20, 253–262. [Google Scholar] [CrossRef]
- Li, L.; Lu, Y.; Zhang, Q.; Zhao, S.; Hu, Z.; Chou, S.-L. Recent progress on layered cathode materials for nonaqueous rechargeable magnesium batteries. Small 2021, 17, 1902767. [Google Scholar] [CrossRef]
- Canepa, P.; Sai Gautam, G.; Hannah, D.C.; Malik, R.; Liu, M.; Gallagher, K.G.; Persson, K.A.; Ceder, G. Odyssey of multivalent cathode materials: Open questions and future challenges. Chem. Rev. 2017, 117, 4287–4341. [Google Scholar] [CrossRef]
- Yang, R.; Yao, W.; Tang, B.; Zhang, F.; Lei, X.; Lee, C.-S.; Tang, Y. Development and challenges of electrode materials for rechargeable Mg batteries. Energy Storage Mater. 2021, 42, 687–704. [Google Scholar] [CrossRef]
- Saha, P.; Datta, M.K.; Velikokhatnyi, O.I.; Manivannan, A.; Alman, D.; Kumta, P.N. Rechargeable magnesium battery: Current status and key challenges for the future. Prog. Mater. Sci. 2014, 66, 1–86. [Google Scholar] [CrossRef]
- Bella, F.; De Luca, S.; Fagiolari, L.; Versaci, D.; Amici, J.; Francia, C.; Bodoardo, S. An overview on anodes for magnesium batteries: Challenges towards a promising storage solution for renewables. Nanomaterials 2021, 11, 810. [Google Scholar] [CrossRef]
- Levi, E.; Lancry, E.; Mitelman, A.; Aurbach, D.; Ceder, G.; Morgan, D.; Isnard, O. Phase diagram of Mg insertion into Chevrel phases, MgxMo6T8 (T = S, Se). Part 1. Crystal structure of the sulfides. Chem. Mater. 2006, 18, 5492. [Google Scholar] [CrossRef]
- Kganyago, K.R.; Ngoepe, P.E.; Catlow, C.R.A. Voltage profile, structural prediction, and electronic calculations for MgxMo6S8. Phys. Rev. B 2003, 67, 104103. [Google Scholar] [CrossRef]
- Ichitsubo, T.; Yagi, S.; Nakamura, R.; Ichikawa, Y.; Okamoto, S.; Sugimura, K.; Kawaguchi, T.; Kitada, A.; Oishi, M.; Doid, T.; et al. A new aspect of Chevrel compounds as positive electrodes for magnesium batteries. J. Mater. Chem. A 2014, 2, 14858–14866. [Google Scholar] [CrossRef]
- Regulacio, M.D.; Nguyen, D.T.; Horia, R.; She, Z.W. Designing nanostructured metal chalcogenides as cathode materials for rechargeable magnesium batteries. Small 2021, 17, 2007683. [Google Scholar] [CrossRef]
- Li, Z.; Mu, X.; Zhao-Karger, Z.; Diemant, T.; Behm, R.J.; Kübel, C.; Fichtner, M. Fast kinetics of multivalent intercalation chemistry enabled by solvated magnesium-ions into self-established metallic layered materials. Nat. Commun. 2018, 9, 5115. [Google Scholar] [CrossRef]
- Kolli, S.K.; van der Ven, A. First-principles study of spinel MgTiS2 as a cathode material. Chem. Mater. 2018, 30, 2436–2442. [Google Scholar] [CrossRef]
- Sun, X.; Bonnick, P.; Duffort, V.; Liu, M.; Rong, Z.; Persson, K.A.; Ceder, G.; Nazar, L.F. A high capacity thiospinel cathode for Mg batteries. Energy Environ. Sci. 2016, 9, 2273–2277. [Google Scholar] [CrossRef]
- Liu, J.; Zhong, Y.; Li, X.; Ying, T.; Han, T.; Li, J. A novel rose-with-thorn ternary MoS2@carbon@polyaniline nanocomposite as a rechargeable magnesium battery cathode displaying stable capacity and low-temperature performance. Nanoscale Adv. 2021, 3, 5576–5580. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, Y.; Wang, J.; Pan, F. CuCo2S4/CuS@MWCNTs composite as a cathode for rechargeable magnesium-ion batteries with long cycle life. J. Phys. Chem. C 2021, 125, 19673. [Google Scholar] [CrossRef]
- Zhu, G.; Xia, G.; Yu, X. Hierarchical 3D cuprous sulfide nanoporous cluster arrays self-assembled on copper foam as a binder-free cathode for hybrid magnesium-based batteries. Small 2021, 17, 2101845. [Google Scholar] [CrossRef]
- Cabello, M.; Alcántara, R.; Nacimiento, F.; Ortiz, G.; Lavela, P.; Tirado, J.L. Electrochemical and chemical insertion/deinsertion of magnesium in spinel-type MgMn2O4 and lambda-MnO2 for both aqueous and non-aqueous magnesium-ion batteries. CrystEngComm 2015, 17, 8728–8735. [Google Scholar] [CrossRef]
- Okamoto, S.; Ichitsubo, T.; Kawaguchi, T.; Kumagai, Y.; Oba, F.; Yagi, S.; Shimokawa, K.; Goto, N.; Doi, T.; Matsubara, E. Intercalation and push-out process with spinel-to-rocksalt transition on Mg insertion into spinel oxides in magnesium batteries. Adv. Sci. 2015, 2, 1500072. [Google Scholar] [CrossRef]
- Knight, J.C.; Therese, S.; Manthiram, A. On the utility of spinel oxide hosts for magnesium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 22953–22961. [Google Scholar] [CrossRef]
- Liu, M.; Rong, Z.; Malik, R.; Canepa, P.; Jain, A.; Ceder, G.; Persson, K.A. Spinel compounds as multivalent battery cathodes: A systematic evaluation based on ab initio calculations. Energy Environ. Sci. 2015, 8, 964–974. [Google Scholar] [CrossRef] [Green Version]
- Medina, A.; Rodríguez, A.I.; Pérez-Vicente, C.; Alcántara, R. Testing the reversible insertion of magnesium in a cation-deficient manganese oxy-spinel through a concentration cell. Dalton Trans. 2021, 50, 2123–2130. [Google Scholar] [CrossRef]
- Bayliss, R.D.; Key, B.; Sai Gautam, G.; Canepa, P.; Kwon, B.J.; Lapidus, S.H.; Dogan, F.; Adil, A.A.; Lipton, A.S.; Baker, P.J.; et al. Probing Mg migration in spinel oxides. Chem. Mater. 2020, 32, 663–670. [Google Scholar] [CrossRef]
- Sai Gautam, G.; Canepa, P.; Urban, A.; Bo, S.-H.; Ceder, G. Influence of inversion on Mg mobility and electrochemistry in spinels. Chem. Mater. 2017, 29, 7918–7930. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Yagi, S.; Ichitsubo, T. Suppressive effect of Fe cations in Mg(Mn1−xFex)2O4 positive electrodes on oxidative electrolyte decomposition for Mg rechargeable batteries. J. Power Sources 2019, 435, 226822. [Google Scholar] [CrossRef]
- Medina, A.; Rodríguez, A.I.; Pérez-Vicente, C.; Alcántara, R. Magnesium deintercalation from the spinel-type MgMn2−yFeyO4 (0.4 ≤ y ≤ 2.0) by acid-treatment and electrochemistry. Chem. Eur. J. 2021, 27, 12599–12609. [Google Scholar] [CrossRef]
- Kobayashi, H.; Yamaguchi, K.; Honma, I. Rapid room-temperature synthesis of ultrasmall cubic Mg–Mn spinel cathode materials for rechargeable Mg-ion batteries. RSC Adv. 2019, 9, 36434–36439. [Google Scholar] [CrossRef] [Green Version]
- Tao, S.; Huang, W.; Liu, Y.; Chen, S.; Qian, B.; Song, L. Three-dimensional hollow spheres of the tetragonal-spinel MgMn2O4 cathode for high-performance magnesium ion batteries. J. Mater. Chem. A 2018, 6, 8210–8214. [Google Scholar] [CrossRef]
- Ichitsubo, T.; Adachi, T.; Yagi, S.; Doi, T. Potential Positive Electrodes for High-Voltage Magnesium-Ion Batteries. J. Mater. Chem. 2011, 21, 11764–11772. [Google Scholar] [CrossRef]
- Yokozaki, R.; Kobayashi, H.; Mandai, T.; Honma, I. Effect of Al Substitution on Structure and Cathode Performance of MgMn2O4 Spinel for Magnesium Rechargeable Battery. J. Alloys Compd. 2021, 872, 159723. [Google Scholar] [CrossRef]
- Spahr, M.E.; Novák, P.; Haas, O.; Nesper, R. Electrochemical insertion of lithium, sodium, and magnesium in molybdenum(VI) oxide. J. Power Sources 1995, 54, 346–351. [Google Scholar] [CrossRef]
- Joshi, R.P.; Eickholt, J.; Li, L.; Fornari, M.; Barone, V.; Peralta, J.E. Machine learning the voltage of electrode materials in metal-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 18494–18503. [Google Scholar] [CrossRef] [Green Version]
- Gershinsky, G.; Yoo, H.D.; Gofer, Y.; Aurbach, D. Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. Langmuir 2013, 29, 10964–10972. [Google Scholar] [CrossRef]
- Wan, L.F.; Prendergast, D. Ion-pair dissociation on α-MoO3 surfaces: Focus on the electrolyte–cathode compatibility issue in Mg batteries. J. Phys. Chem. 2018, 122, 398–405. [Google Scholar] [CrossRef]
- Incorvati, J.T.; Wan, L.F.; Key, B.; Zhou, D.; Liao, C.; Fuoco, L.; Holland, M.; Wang, H.; Prendergast, D.; Poeppelmeier, K.R.; et al. Reversible magnesium intercalation into a layered oxyfluoride cathode. Chem. Mater. 2016, 28, 17–20. [Google Scholar] [CrossRef]
- Wan, L.F.; Incorvati, J.T.; Poeppelmeier, K.R.; Prendergast, D. Building a fast lane for Mg diffusion in α-MoO3 by fluorine doping. Chem. Mater. 2016, 28, 6900. [Google Scholar] [CrossRef]
- Cabello, M.; Medina, A.; Alcántara, R.; Nacimiento, F.; Pérez-Vicente, C.; Tirado, J.L. A theoretical and experimental study of hexagonal molybdenum trioxide as dual-ion electrode for rechargeable magnesium battery. J. Alloys Compd. 2020, 831, 154795. [Google Scholar] [CrossRef]
- Yang, J.D.; Wang, J.X.; Wang, X.; Dong, X.Y.; Zhu, L.; Zeng, W.; Wang, J.F.; Pan, F.S. First-principles prediction of layered MoO2 and MoOSe as promising cathode materials for magnesium ion batteries. Nanotechnology 2021, 32, 495405. [Google Scholar] [CrossRef] [PubMed]
- Gregory, T.D.; Hoffman, R.J.; Winterton, R.C. Nonaqueous electrochemistry of magnesium: Applications to energy storage. J. Electrochem. Soc. 1990, 137, 775–780. [Google Scholar] [CrossRef]
- Sai Gautam, G.; Canepa, P.; Abdellahi, A.; Urban, A.; Malik, R.; Ceder, G. The intercalation phase diagram of Mg in V2O5 from first-principles. Chem. Mater. 2015, 27, 3733–3742. [Google Scholar] [CrossRef] [Green Version]
- Sa, N.; Wang, H.; Proffit, D.L.; Lipson, A.L.; Key, B.; Liu, M.; Feng, Z.; Fister, T.T.; Ren, Y.; Sun, C.J.; et al. Is alpha-V2O5 a cathode material for Mg insertion batteries? J. Power Sources 2016, 323, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Pereira-Ramos, J.P.; Messina, R.; Perichon, J. Electrochemical formation of a magnesium vanadium bronze MgxV2O5 in sulfone-based electrolytes at 150 °C. J. Electroanal. Chem. 1987, 218, 241–249. [Google Scholar] [CrossRef]
- Amatucci, G.G.; Badway, F.; Singhal, A.; Beaudoin, B.; Skandan, G.; Bowmer, T.; Plitz, I.; Pereira, N.; Chapman, T.; Jaworski, R. Investigation of yttrium and polyvalent ion intercalation into nanocrystalline vanadium oxide. J. Electrochem. Soc 2001, 148, A940–A950. [Google Scholar] [CrossRef]
- Yoo, H.D.; Jokisaari, J.R.; Yu, Y.-S.; Kwon, B.J.; Hu, L.; Kim, S.; Han, S.-D.; Lopez, M.; Lapidus, S.H.; Nolis, G.M.; et al. Intercalation of magnesium into a layered vanadium oxide with high capacity. ACS Energy Lett. 2019, 4, 1528–1534. [Google Scholar] [CrossRef]
- Zhou, B.; Shi, H.; Cao, R.F.; Zhang, X.D.; Jiang, Z.Y. Theoretical study on the initial stage of a magnesium battery based on a V2O5 cathode. Phys. Chem. Chem. Phys. 2014, 16, 18578–18585. [Google Scholar] [CrossRef]
- Johnson, I.D.; Nolis, G.; Yin, L.; Yoo, H.D.; Parajuli, P.; Mukherjee, A.; Andrews, J.L.; Lopez, M.; Klie, R.F.; Banerjee, S.; et al. enhanced charge storage of nanometric ζ-V2O5 in Mg electrolytes. Nanoscale 2020, 12, 22150–22160. [Google Scholar] [CrossRef]
- Attias, R.; Salama, M.; Hirsch, B.; Gofer, Y.; Aurbach, D. Solvent Effects on the Reversible Intercalation of Mg Ions into V2O5 Electrodes. ChemElectroChem 2018, 5, 3514–3524. [Google Scholar] [CrossRef]
- Attias, R.; Salama, M.; Hirsch, B.; Pant, R.; Gofer, Y.; Aurbach, D. Anion effects on cathode electrochemical activity in rechargeable magnesium batteries: A case study of V2O5. ACS Energy Lett. 2019, 4, 209–214. [Google Scholar] [CrossRef]
- Sai Gautam, G.; Canepa, P.; Richards, W.D.; Malik, R.; Ceder, G. Role of structural H2O in intercalation electrodes: The case of Mg in nanocrystalline xerogel-V2O5. Nano Lett. 2016, 16, 2426–2431. [Google Scholar] [CrossRef] [Green Version]
- Arthur, T.S.; Kato, K.; Germain, J.; Guo, J.; Glans, P.-A.; Liu, Y.-S.; Holmes, D.; Fan, X.; Mizuno, F. Amorphous V2O5–P2O5 as High-Voltage Cathodes for Magnesium Batteries. Chem. Commun. 2015, 51, 15657–15660. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Zhuang, Y.; Wang, F.; Yang, Y.; Zeng, J.; Zhao, J. High-rate performance magnesium batteries achieved by direct growth of honeycomb-like V2O5 electrodes with rich oxygen vacancies. Nano Res. 2021, in press. [Google Scholar] [CrossRef]
- Yao, Z.; Yu, Y.; Wu, Q.; Cui, M.; Zhou, X.; Liu, J.; Li, C. Maximizing magnesiation capacity of nanowire cluster oxides by conductive macromolecule pillaring and multication intercalation. Small 2021, 17, 2102168. [Google Scholar] [CrossRef]
- Zuo, C.; Xiao, Y.; Pan, X.; Xiong, F.; Zhang, W.; Long, J.; Dong, S.; An, Q.; Luo, P. Organic-inorganic superlattices of vanadium oxide@polyaniline for high-performance magnesium-ion batteries. ChemSusChem 2021, 14, 2093–2099. [Google Scholar] [CrossRef]
- Cabello, M.; Nacimiento, F.; Alcántara, R.; Lavela, P.; Ortiz, G.; Tirado, J. Nanobelts of Beta-Sodium Vanadate as Electrode for Magnesium and Dual Magnesium-Sodium Batteries. J. Electrochem. Soc. 2016, 163, A2781–A2790. [Google Scholar] [CrossRef] [Green Version]
- Medina, A.; Cabello, M.; Alcántara, R.; Pérez-Vicente, C.; Tirado, J.L. Theoretical and experimental study on the electrochemical behavior of beta-sodium vanadate in rechargeable magnesium batteries using several electrolyte solutions. J. Electrochem. Soc. 2020, 167, 070512. [Google Scholar] [CrossRef]
- Wei, L.; Lian, R.; Wang, D.; Zhao, Y.; Yang, D.; Zhao, H.; Wang, Y.; Chen, G.; Wei, Y. Magnesium ion storage properties in a layered (NH4)2V6O16·1.5H2O nanobelt cathode material activated by lattice water. ACS Appl. Mater. Interfaces 2021, 13, 30625. [Google Scholar] [CrossRef]
- Muthuraj, D.; Sarkar, A.; Panda, M.R.; Adil, M.; Sagdeo, A.; Mitra, S. Zirconium-doped vanadium oxide and ammonium linked layered cathode to construct a full-cell magnesium-ion battery: A realization and structural, electrochemical study. Batter. Supercaps 2021, in press. [Google Scholar] [CrossRef]
- Zuo, C.; Tang, W.; Lan, B.; Xiong, F.; Tang, H.; Dong, S.; Zhang, W.; Tang, C.; Li, J.; Ruan, Y.; et al. Unexpected discovery of magnesium-vanadium spinel oxide containing extractable Mg2+ as a high-capacity cathode material for magnesium ion batteries. Chem. Eng. J. 2021, 405, 127005. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Yang, C.; Mu, K.; Wang, S.; Pan, Z.; Zhang, M.; Si, T. A microcapsule-assistant self-healing magnesium battery cathodes. Energy Technol. 2021, 9, 2100393. [Google Scholar] [CrossRef]
- Huang, Z.-D.; Masese, T.; Orikasa, Y.; Mori, T.; Yamamoto, K. Vanadium phosphate as a promising high-voltage magnesium ion (de)-intercalation cathode host. RSC Adv. 2015, 5, 8598–8603. [Google Scholar] [CrossRef]
- Cabello, M.; Alcántara, R.; Nacimiento, F.; Lavela, P.; Aragón, M.J.; Tirado, J.L. Na3V2(PO4)3 as electrode material for rechargeable magnesium batteries: A case of sodium-magnesium hybrid battery. Electrochim. Acta 2017, 246, 908–913. [Google Scholar] [CrossRef]
- Li, Y.; An, Q.; Cheng, Y.; Liang, Y.; Ren, Y.; Sun, C.-J.; Dong, H.; Tang, Z.; Li, G.; Yao, Y. A high-voltage rechargeable magnesium-sodium hybrid battery. Nano Energy 2017, 34, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Zeng, J.; Yang, Y.; Lai, S.; Huang, J.; Zhang, Y.; Wang, J.; Zhao, J. A Promising High-Voltage Cathode Material Based on Mesoporous Na3V2(PO4)3/C for Rechargeable Magnesium Batteries. Chem. Eur. J. 2017, 23, 16898–16905. [Google Scholar] [CrossRef]
- Ling, C.; Banerjee, D.; Song, W.; Zhang, M.; Matsui, M. First-principles study of the magnesiation of olivines: Redox reaction mechanism, electrochemical and thermodynamic properties. J. Mater. Chem. 2012, 22, 13517–13523. [Google Scholar] [CrossRef]
- Davidson, R.; Verma, A.; Santos, D.; Hao, F.; Fincher, C.; Xiang, S.; van Buskirk, J.; Xie, K.; Pharr, M.; Mukherjee, P.P.; et al. Formation of magnesium dendrites during electrodeposition. ACS Energy Lett. 2019, 4, 375–376. [Google Scholar] [CrossRef]
- Ding, M.S.; Diemant, T.; Behm, R.J.; Passerini, S.; Giffin, G.A. Dendrite growth in mg metal cells containing Mg(TFSI)2/glyme electrolytes. J. Electrochem. Soc. 2018, 165, A1983. [Google Scholar] [CrossRef]
- Attias, R.; Salama, M.; Hirsch, B.; Goffer, Y.; Aurbach, D. Anode-electrolyte interfaces in secondary magnesium batteries. Joule 2019, 3, 27–52. [Google Scholar] [CrossRef] [Green Version]
- Dou, H.; Zhao, X.; Zhang, Y.; Zhao, W.; Yan, Y.; Ma, Z.F.; Wang, X.; Yang, X. Revisiting the degradation of solid/electrolyte interfaces of magnesium metal anodes: Decisive role of interfacial composition. Nano Energy 2021, 86, 106087. [Google Scholar] [CrossRef]
- Son, S.-B.; Gao, T.; Harvey, S.P.; Steirer, K.X.; Stokes, A.; Norman, A.; Wang, C.; Cresce, A.; Xu, K.; Ban, C. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes. Nat. Chem. 2018, 10, 532–539. [Google Scholar] [CrossRef]
- Li, R.; Li, Y.; Zhang, R.; He, M.; Ma, Y.; Huo, H.; Zuo, P.; Yin, G. Voltage hysteresis of magnesium anode: Taking magnesium-sulfur battery as an example. Electrochim. Acta 2021, 369, 137685. [Google Scholar] [CrossRef]
- Li, Y.; Zuo, P.; Li, R.; Huo, H.; Ma, Y.; Du, C.; Gao, Y.; Yin, G.; Weatherup, R.S. Formation of an artificial Mg2+-permeable interphase on Mg anodes compatible with ether and carbonate electrolytes. ACS Appl. Mater. Interfaces 2021, 13, 24565–24574. [Google Scholar] [CrossRef]
- Li, W.; Li, C.; Zhou, C.; Ma, H.; Chen, J. Metallic magnesium nano/mesoscale structures: Their shape-controlled preparation and mg/air battery applications. Angew. Chem. Int. Ed 2006, 45, 6009–6012. [Google Scholar] [CrossRef]
- Liang, Y.; Feng, R.; Yang, S.; Ma, H.; Liang, J.; Chen, J. Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall mg nanoparticle anode. Adv. Mater. 2011, 23, 640–643. [Google Scholar] [CrossRef]
- Horia, R.; Nguyen, D.-T.; Eng, A.Y.S.; Seh, Z.W. Using a chloride-free magnesium battery electrolyte to form a robust anode–electrolyte nanointerface. Nano Lett. 2021, 21, 8220–8228. [Google Scholar] [CrossRef]
- Niu, J.; Zhang, Z.; Aurbach, D. Alloy anode materials for rechargeable Mg ion batteries. Adv. Energy Mater. 2020, 10, 2000697. [Google Scholar] [CrossRef]
- Chen, X.; Wei, S.; Tong, F.; Taylor, M.P.; Cao, P. Electrochemical performance of Mg-Sn alloy anodes for magnesium rechargeable battery. Electrochim. Acta 2021, 398, 139336. [Google Scholar] [CrossRef]
- Arthur, T.S.; Singh, N.; Matsui, M. Electrodeposited Bi, Sb and Bi1-xSbx alloys as anodes for Mg-ion batteries. Electrochem. Commun. 2012, 16, 103–106. [Google Scholar] [CrossRef]
- Murgia, F.; Stievano, L.; Monconduit, L.; Berthelot, R. Insight into the electrochemical behavior of micrometric Bi and Mg3Bi2 as high performance negative electrodes for Mg batteries. J. Mater. Chem. A 2015, 3, 16478–16485. [Google Scholar] [CrossRef]
- Meng, Z.; Li, Z.; Wang, L.; Diemant, T.; Bosubabu, D.; Tang, Y.; Berthelot, R.; Zhao-Karger, Z.; Fichtner, M. Surface engineering of a Mg electrode via a new additive to reduce overpotential. ACS Appl. Mater. Interfaces 2021, 13, 37044–37051. [Google Scholar] [CrossRef] [PubMed]
- Cen, Y.; Dong, J.; Zhu, T.; Cai, X.; Wang, X.; Hu, B.; Xu, C.; Yu, D.; Liu, Y.; Chen, C. Bi nanorods anchored in N-doped carbon shell as anode for high-performance magnesium ion batteries. Electrochim. Acta 2021, 397, 139260. [Google Scholar] [CrossRef]
- Singh, N.; Arthur, T.S.; Ling, C.; Matsui, M.; Mizuno, F. A high energy-density tin anode for rechargeable magnesium-ion batteries. Chem. Commun. 2013, 49, 149–151. [Google Scholar] [CrossRef]
- Nacimiento, F.; Cabello, M.; Pérez-Vicente, C.; Alcántara, R.; Lavela, P.; Ortiz, G.; Tirado, J. On the mechanism of magnesium storage in micro and nano-particulate tin battery electrodes. Nanomaterials 2018, 8, 501. [Google Scholar] [CrossRef] [Green Version]
- Ikhe, A.B.; Han, S.C.; Prabakar, S.J.R.; Park, W.B.; Sohn, K.-S.; Pyo, M. 3Mg/Mg2Sn anodes with unprecedented electrochemical performance towards viable magnesium-ion batteries. J. Mater. Chem. A 2020, 8, 14277. [Google Scholar] [CrossRef]
- Maddegalla, A.; Mukherjee, A.; Blázquez, J.A.; Azaceta, E.; Leonet, O.; Mainar, A.R.; Kovalevsky, A.; Sharon, D.; Martin, J.-F.; Sotta, D.; et al. AZ31 Magnesium alloy foils as thin anodes for rechargeable magnesium batteries. ChemSusChem 2021, 14, 4690–4696. [Google Scholar] [CrossRef]
- Tran, N.-A.; do Van Thanh, N.; Le, M.L.P. Organic positive materials for magnesium batteries: A review. Chem. Eur. J. 2021, 27, 9198–9217. [Google Scholar] [CrossRef]
- Pan, B.; Huang, J.; Feng, Z.; Zeng, L.; He, M.; Zhang, L.; Vaughey, J.T.; Bedzyk, M.J.; Fenter, P.; Zhang, Z.; et al. Polyanthraquinone-based organic cathode for high-performance rechargeable magnesium-ion batteries. Adv. Energy Mater. 2016, 6, 1600140. [Google Scholar] [CrossRef]
- Lu, D.; Liu, H.; Huang, T.; Xu, Z.; Ma, L.; Yang, P.; Qiang, P.; Zhang, F.; Wu, D. Magnesium ion based organic secondary batteries. J. Mater. Chem. A 2018, 6, 17297–17302. [Google Scholar] [CrossRef]
- Dong, H.; Tutusaus, O.; Liang, Y.; Zhang, Y.; Lebens-Higgins, Z.; Yang, W.; Mohtadi, R.; Yao, Y. High-power Mg batteries enabled by heterogeneous enolization redox chemistry and weakly coordinating electrolytes. Nat. Energy 2020, 5, 1043–1050. [Google Scholar] [CrossRef]
- Tian, J.; Cao, D.; Zhou, X.; Hu, J.; Huang, M.; Li, C. High-capacity Mg−organic batteries based on nanostructured rhodizonate salts activated by Mg−Li dual-salt electrolyte. ACS Nano 2018, 12, 3424–3435. [Google Scholar] [CrossRef]
- Yang, H.; Xu, F. Effects of conjugated structure on the magnesium storage performance of dianhydrides. ChemPhysChem 2021, 22, 1455. [Google Scholar] [CrossRef]
- Cui, L.; Zhou, L.; Zhang, K.; Xiong, F.; Tan, S.; Li, M.; An, Q.; Kang, Y.M.; Mai, L. Salt-controlled dissolution in pigment cathode for high-capacity and long-life magnesium organic batteries. Nano Energy 2019, 65, 103902. [Google Scholar] [CrossRef]
- Makino, K.; Katayama, Y.; Miura, T.; Kishi, T. Electrochemical insertion of magnesium to Mg0.5Ti2(PO4)3. J. Power Sources 2001, 99, 66–69. [Google Scholar] [CrossRef]
- Wu, N.; Lyu, Y.C.; Xiao, R.J.; Yu, X.; Yin, Y.X.; Yang, X.Q.; Li, H.; Gu, L.; Guo, Y.G. A highly reversible, low-strain Mg-ion insertion anode material for rechargeable Mg-ion batteries. NPG Asia Mater. 2014, 6, e120. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Xu, Y.; An, Q.; Jiang, Y.; Liu, Z.; Xiong, F.; Zou, W.; Zhang, G.; Dai, Y.; Yu, R.; et al. MOF derived TiO2 with reversible magnesium pseudocapacitance for ultralong-life Mg metal batteries. Chem. Eng. J. 2021, 418, 128491. [Google Scholar] [CrossRef]
- Koketsu, T.; Ma, J.; Morgan, B.; Body, M.; Legein, C.; Dachraoui, W.; Giannini, M.; Demortiere, A.; Salanne, M.; Dardoize, F.; et al. Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nat. Mater. 2017, 16, 1142–1148. [Google Scholar] [CrossRef]
- Yang, J.; Li, J.; Gong, W.; Geng, F. Genuine divalent magnesium-ion storage and fast diffusion kinetics in metal oxides at room temperature. Proc. Natl. Acad. Sci. USA 2021, 118, e2111549118. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J.; Zhao, Q.; Wang, Y.; Chen, J. Layered Na2Ti3O7/MgNaTi3O7/Mg0.5NaTi3O7 nanoribbons as high-performance anode of rechargeable Mg-ion batteries. ACS Energy Lett. 2016, 1, 1165–1172. [Google Scholar] [CrossRef]
- Kim, D.-M.; Jung, S.C.; Ha, S.; Kim, Y.; Park, Y.; Ryu, J.H.; Han, Y.-K.; Lee, K.T. Cointercalation of Mg2+ ions into graphite for magnesium-ion batteries. Chem. Mater. 2018, 30, 3199–3203. [Google Scholar] [CrossRef]
- Shimizu, M.; Nakahigashi, A.; Arai, S. Intercalation/deintercalation of solvated Mg2+ into/from graphite interlayers. Phys. Chem. Chem. Phys. 2021, 23, 16981. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, J.; Wang, Q.; Chen, X.; Kawazoe, Y.; Jena, P. Penta-graphene: A new carbon allotrope. Proc. Natl. Acad. Sci. USA 2015, 112, 2372–2377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.A.; Muhammad, I.; Ahmad, R.; Ahmad, I. Penta graphene: A superior anode material for Mg-ion batteries with high specific theoretical capacity. Ionics 2021, 27, 4819–4828. [Google Scholar] [CrossRef]
- Jaschin, P.W.; Gao, Y.; Li, Y.; Bo, S.-H. A materials perspective on magnesium-ion based solid-state electrolytes. J. Mater. Chem. A 2020, 8, 2875–2897. [Google Scholar] [CrossRef]
- Chusid, O.; Gofer, Y.; Gizbar, H.; Vestfrid, Y.; Levi, E.; Aurbach, D.; Riech, I. Solid-state rechargeable magnesium batteries. Adv. Mater. 2003, 15, 627–630. [Google Scholar] [CrossRef]
- Du, A.; Zhang, H.; Zhang, Z.; Zhao, J.; Cui, Z.; Zhao, Y.; Dong, S.; Wang, L.; Zhou, X.; Cui, G.A. Crosslinked polytetrahydrofuran-borate-based polymer electrolyte enabling wide-working-temperature-range rechargeable magnesium batteries. Adv. Mater. 2019, 31, e1805930. [Google Scholar] [CrossRef]
- Qu, X.; Tang, Y.; Du, A.; Dong, S.; Cui, G. Polymer electrolytes—New opportunities for the development of multivalent ion batteries. Chem. Asian J. 2021, 16, 3272–3280. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, J.; Han, W.; Zhang, J.; Ding, G.; Dong, S.; Cui, G. Review—In situ polymerization for integration and interfacial protection towards solid state lithium batteries. J. Electrochem. Soc. 2020, 167, 070527. [Google Scholar] [CrossRef]
- Ikeda, S.; Takahashi, M.; Ishikawa, J.; Ito, K. Solid Electrolytes with multivalent cation conduction. 1. Conducting species in MgZr-PO4 system. Solid State Ion. 1987, 23, 125–129. [Google Scholar] [CrossRef]
- Imanaka, N.; Okazaki, Y.; Adachi, G. Divalent magnesium ionic conduction in the magnesium phosphate based composites. Chem. Lett. 1999, 28, 939–940. [Google Scholar] [CrossRef]
- Liang, B.; Keshishian, V.; Liu, S.; Yi, E.; Jia, D.; Zhou, Y.; Kieffer, J.; Ye, B.; Laine, R.M. Processing liquid-feed flame spray pyrolysis synthesized Mg0.5Ce0.2Zr1.8(PO4)3 nanopowders to free standing thin films and pellets as potential electrolytes in all solid- state Mg batteries. Electrochim. Acta 2018, 272, 144–153. [Google Scholar] [CrossRef]
- Tamura, S.; Yamane, M.; Hoshino, Y.; Imanaka, N. Highly conducting divalent Mg2+ cation solid electrolytes with well-ordered three-dimensional network structure. J. Solid State Chem. 2016, 235, 7–11. [Google Scholar] [CrossRef]
- Yamanaka, T.; Hayashi, A.; Yamauchi, A.; Tatsuinisago, M. Preparation of magnesium ion conducting MgS-P2S5-MgI2 glasses by a mechanochemical technique. Solid State Ion. 2014, 262, 601–603. [Google Scholar] [CrossRef]
- Canepa, P.; Bo, S.-H.; Sai Gautam, G.; Key, B.; Richards, W.; Shi, T.; Tian, Y.; Wang, Y.; Li, J.; Ceder, G. High magnesium mobility in ternary spinel chalcogenides. Nat. Commun. 2017, 8, 1759. [Google Scholar] [CrossRef]
- Matsuo, M.; Oguchi, H.; Sato, T.; Takamura, H.; Tsuchida, E.; Ikeshoji, T.; Shin-ichi, O. Sodium and magnesium ionic conduction in complex hydrides. J. Alloys Compd. 2013, 580, S98–S101. [Google Scholar] [CrossRef]
- Higashi, S.; Miwa, K.; Aoki, M.; Takechi, K. A novel inorganic solid state ion conductor for rechargeable Mg batteries. Chem. Commun. 2014, 50, 1320–1322. [Google Scholar] [CrossRef]
- Roedern, E.; Kühnel, R.-S.; Remhof, A.; Battaglia, C. Magnesium ethylenediamine borohydride as solid-state electrolyte for magnesium batteries. Sci. Rep. 2017, 7, 46189. [Google Scholar] [CrossRef] [Green Version]
- Aubrey, M.L.; Ameloot, R.; Wiers, B.M.; Long, J.R. Metal–organic frameworks as solid magnesium electrolytes. Energy Environ. Sci. 2014, 7, 667–671. [Google Scholar] [CrossRef]
- Park, S.S.; Tulchinsky, Y.; Dincă, M. Single-Ion Li+, Na+, and Mg2+ solid electrolytes supported by a mesoporous anionic Cu–azolate metal–organic framework. J. Am. Chem. Soc. 2017, 139, 13260–13263. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Li, Y.; Zhang, H.; Wang, A.; Lo, W.-S.; Dong, Q.; Wong, N.; Povinelli, C.; Shao, Y.; Chereddy, S.; et al. A metal–organic framework thin film for selective Mg2+ transport. Angew. Chem. Int. Ed. 2019, 58, 15313–15317. [Google Scholar] [CrossRef]
- Yoshida, Y.; Kato, K.; Sadakiyo, M. Vapor-Induced Superionic Conduction of Magnesium Ions in a Metal−Organic Framework. J. Phys. Chem. C 2021, 125, 21124–21130. [Google Scholar] [CrossRef]
- Kim, K.; Siegel, D.J. Multivalent ion transport in anti-perovskite solid electrolytes. Chem. Mater. 2021, 33, 2187–2197. [Google Scholar] [CrossRef]
- Sheha, E.; Liu, F.; Wang, T.; Farrag, M.; Liu, J.; Yacout, N.; Kebede, M.A.; Sharma, N.; Fan, L.-Z. Dual polymer/liquid electrolyte with BaTiO3 electrode for magnesium batteries. ACS Appl. Energy Mater. 2020, 3, 5882–5892. [Google Scholar] [CrossRef]
- Sulaiman, M.; Rahman, A.A.; Mohamed, N.S. Structural, thermal and conductivity studies of magnesium nitrate—Alumina composite solid electrolytes prepared via sol-gel method. Int. J. Electrochem. Sci. 2013, 8, 6647–6655. [Google Scholar]
- Sulaiman, M.; Su, N.; Mohamed, N.S. Sol-gel synthesis and characterization of β-MgSO4:Mg(NO3)2–MgO composite solid electrolyte. Ionics 2017, 23, 443–452. [Google Scholar] [CrossRef]
- Hou, S.; Ji, X.; Gaskell, K.; Wang, P.-F.; Wang, L.; Xu, J.; Sun, R.; Borodin, O.; Wang, C. Solvation sheath reorganization enables divalent metal batteries with fast interfacial charge transfer kinetics. Science 2021, 374, 172–178. [Google Scholar] [CrossRef]
- Xu, H.; Zhu, D.; Zhu, W.; Sun, F.; Zou, J.; Laine, R.M.; Ding, W. Rational design of high concentration electrolytes and MXene-based sulfur host materials toward high-performance magnesium sulfur batteries. Chem. Eng. J. 2022, 428, 131031. [Google Scholar] [CrossRef]
- Popovic, J. The importance of electrode interfaces and interphases for rechargeable metal batteries. Nat. Commun. 2021, 12, 6240. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina, A.; Pérez-Vicente, C.; Alcántara, R. Advancing towards a Practical Magnesium Ion Battery. Materials 2021, 14, 7488. https://doi.org/10.3390/ma14237488
Medina A, Pérez-Vicente C, Alcántara R. Advancing towards a Practical Magnesium Ion Battery. Materials. 2021; 14(23):7488. https://doi.org/10.3390/ma14237488
Chicago/Turabian StyleMedina, Alejandro, Carlos Pérez-Vicente, and Ricardo Alcántara. 2021. "Advancing towards a Practical Magnesium Ion Battery" Materials 14, no. 23: 7488. https://doi.org/10.3390/ma14237488
APA StyleMedina, A., Pérez-Vicente, C., & Alcántara, R. (2021). Advancing towards a Practical Magnesium Ion Battery. Materials, 14(23), 7488. https://doi.org/10.3390/ma14237488