Fabrication of Millable Polyurethane Elastomer/Eucommia Ulmoides Rubber Composites with Superior Sound Absorption Performance
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Various MPU/EUG Composites
2.3. Characterizations
2.3.1. SEM Observation
2.3.2. Differential Scanning Calorimetry (DSC)
2.3.3. X-ray Diffraction (XRD)
2.3.4. Dynamic Mechanical Analysis (DMA)
2.3.5. Sound Absorption Coefficients Performances
2.3.6. Mechanical Properties
3. Results
3.1. Scanning Electron Microscopy (SEM) Observation
3.2. Crystallization and Melting Properties
3.3. Damping Properties
3.4. Sound Absorption Performances
3.5. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baghban, S.A.; Khorasani, M.; Sadeghi, G.M.M. Soundproofing performance of flexible polyurethane foams as a fractal object. J. Polym. Res. 2020, 27, 62. [Google Scholar] [CrossRef]
- Tsimouri, I.C.; Montibeller, S.; Kern, L.; Hine, P.J.; Spolenak, R.; Gusev, A.A.; Danzi, S. A simulation-driven design approach to the manufacturing of stiff composites with high viscoelastic damping. Compos. Sci. Technol. 2021, 208, 108744. [Google Scholar] [CrossRef]
- Ciaburro, G.; Iannace, G.; Passaro, J.; Bifulco, A.; Marano, A.D.; Guida, M.; Marulo, F.; Branda, F. Artificial neural network-based models for predicting the sound absorption coefficient of electrospun poly (vinyl pyrrolidone)/silica composite. Appl. Acoust. 2020, 169, 107472. [Google Scholar] [CrossRef]
- Iannace, G.; Ciaburro, G.; Trematerra, A. Metamaterials acoustic barrier. Appl. Acoust. 2021, 181, 108172. [Google Scholar] [CrossRef]
- Jia, X.Q.; Li, S.Y.; Miu, H.J.; Yang, T.; Rao, K.; Wu, D.Y.; Cui, B.L.; Ou, J.L.; Zhu, Z.C. Carbon nanomaterials: A new sustainable solution to reduce the emerging environmental pollution of turbomachinery noise and vibration. Front. Chem. 2020, 8, 683. [Google Scholar] [CrossRef]
- Liu, C.; Fan, J.; Chen, Y. Design of regulable chlorobutyl rubber damping materials with high-damping value for a wide temperature range. Polym. Test. 2019, 79, 106003. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, R.; Wang, M.; Liu, X.; Zhao, X.; Lu, Y.; Feng, A.; Zhang, L. Design and synthesis of phenyl silicone rubber with functional epoxy groups through anionic copolymerization and subsequent epoxidation. Polymer 2020, 186, 122077. [Google Scholar] [CrossRef]
- Zheng, X.; Ren, Z.; Shen, L.; Zhang, B.; Bai, H. Dynamic performance of laminated high-damping and high-stiffness composite structure composed of metal rubber and silicone rubber. Materials 2021, 14, 187. [Google Scholar] [CrossRef]
- Jayakumari, V.G.; Shamsudeen, R.K.; Rajeswari, R.; Mukundan, T. Viscoelastic and acoustic characterization of polyurethane-based acoustic absorber panels for underwater applications. J. Appl. Polym. Sci. 2019, 136, 47165. [Google Scholar] [CrossRef]
- Cao, R.; Deng, L.; Feng, Z.; Zhao, X.; Li, X.; Zhang, L. Preparation of natural bio-based Eucommia ulmoides gum/styrene-butadiene rubber composites and the evaluation of their damping and sound absorption properties. Polymer 2021, 213, 123292. [Google Scholar] [CrossRef]
- Wei, X.; Peng, P.; Peng, F.; Dong, J. Natural polymer Eucommia ulmoides rubber: A novel material. J. Agric. Food Chem. 2021, 69, 3797–3821. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, X.; Zhang, T.; Zhang, J.; Zhang, P.; Wang, W. Determination of the content of Eucommia ulmoides gum by variable temperature Fourier Transform Infrared Spectrum. Polym. Test. 2017, 63, 582–586. [Google Scholar] [CrossRef]
- Xia, L.; Wang, Y.; Ma, Z.; Du, A.; Qiu, G.; Xin, Z. Preparation of epoxidized Eucommia ulmoidesgum and its application in styrene-butadiene rubber (SBR)/silica composites. Polym. Adv. Technol. 2017, 28, 94–101. [Google Scholar] [CrossRef]
- Li, M.; Wang, K.; Xiong, Y. Multiple intermolecular interaction to improve the abrasion resistance and wet skid resistance of Eucommia ulmoides gum/styrene butadiene rubber composite. Materials 2021, 14, 5246. [Google Scholar] [CrossRef]
- Zhang, J.; Xue, Z. Study on under-water sound absorption properties of Eucommia ulmoides gum and its blends. Polym. Bull. 2011, 67, 511–525. [Google Scholar] [CrossRef]
- Li, Z.; Shen, Y.; Gu, X.; Li, J.; Gao, Y. A novel underwater acoustically transparent material: Fluorosilicone polyester polyurethane. J. Appl. Polym. Sci. 2019, 136, 47894. [Google Scholar] [CrossRef]
- Zhao, X.; Shou, T.; Liang, R.; Hu, S.; Yu, P.; Zhang, L. Bio-based thermoplastic polyurethane derived from polylactic acid with high-damping performance. Ind. Crop. Prod. 2020, 154, 112619. [Google Scholar] [CrossRef]
- Zou, R.; Tan, J.; Liu, K.; Liang, L.; Cheng, X.; Zhang, X.; Zhang, L.; Yue, D. A hydrogenated hydroxy-terminated butadiene–acrylonitrile copolymer-based polyurethane elastomer with improved mechanical properties and aging resistance. RSC Adv. 2016, 6, 20198–20201. [Google Scholar] [CrossRef]
- Jin, X.; Guo, N.; You, Z.; Tan, Y. Design and performance of polyurethane elastomers composed with different soft segments. Materials 2020, 13, 4991. [Google Scholar] [CrossRef]
- Król, P.; Król, B. Structures, properties and applications of the polyurethane ionomers. J. Mater. Sci. 2019, 55, 73–87. [Google Scholar] [CrossRef] [Green Version]
- Shafeeq, V.H.; Subash, C.K.; Varghese, S.; Unnikrishnan, G.P. Nanohydroxyapatite embedded blends of ethylene-co-vinyl acetate and millable polyurethane as piezoelectric materials: Dielectric, viscoelastic and mechanical features. Polym. Int. 2020, 69, 1256–1266. [Google Scholar] [CrossRef]
- Hota, N.K.; Karna, N.; Tripathy, D.K.; Dubey, K.A.; Sahoo, B.P. Exploring the effect of electron beam on swelling, gel fraction, mechanical and thermal properties of ethylene acrylic elastomer/millable polyurethane rubber blends. Plast. Rubber Compos. 2019, 48, 248–255. [Google Scholar] [CrossRef]
- Yeganeh, H.; Mehdizadeh, M.R. Synthesis and properties of isocyanate curable millable polyurethane elastomers based on castor oil as a renewable resource polyol. Eur. Polym. J. 2004, 40, 1233–1238. [Google Scholar] [CrossRef]
- Gong, B.; Ouyang, C.; Yuan, Y.; Gao, Q. Synthesis and properties of a millable polyurethane elastomer with low halloysite nanotube content. RSC Adv. 2015, 5, 77106–77114. [Google Scholar] [CrossRef]
- Fei, K.; Ji, L.; Xie, J. GB/T 528-2009. Rubber, Vulcanized or Thermoplastic—Determination of Tensile Stress-Strain Properties; China National Institute of Standar: Beijing, China, 2009; Available online: http://www.cssn.net.cn/cssn/productDetail/8692a0215e9576ab048fd74dffaac52d (accessed on 24 April 2009). (In Chinese)
- Chen, M.; Gao, F. GB/T 531.1-2008. Rubber, Vulcanized or Thermoplastic—Determination of Indentation Hardness—Part 1: Duromerer Method (Shore Hardness); China National Institute of Standar: Beijing, China, 2008; Available online: http://www.cssn.net.cn/cssn/productDetail/afd2f0dc6f614e0fb5bdcb63a8e8bba8 (accessed on 4 June 2008). (In Chinese)
- Kang, H.; Yao, L.; Li, Y.; Hu, X.; Yang, F.; Fang, Q.; Zhang, L. Highly toughened polylactide by renewable Eucommia ulmoides gum. J. Appl. Polym. Sci. 2018, 135, 46017. [Google Scholar] [CrossRef]
- Fang, Q.; Jin, X.; Yang, F.; Ma, C.; Gao, Y.; Wang, N. Preparation and characterizations of eucommia ulmoides gum/polypropylene blend. Polym. Bull. 2015, 73, 357–367. [Google Scholar] [CrossRef]
- Yin, D.; Mi, J.; Zhou, H.; Wang, X.; Yu, K. Simple and feasible strategy to fabricate microcellular poly (butylene succinate) foams by chain extension and isothermal crystallization induction. J. Appl. Polym. Sci. 2020, 137, 48850. [Google Scholar] [CrossRef]
- Zhang, J.; Xue, Z. A comparative study on the properties of Eucommia ulmoides gum and synthetic trans-1,4-polyisoprene. Polym. Test. 2011, 30, 753–759. [Google Scholar] [CrossRef]
- Sun, Q.; Zhao, X.; Wang, D.; Dong, J.; She, D.; Peng, P. Preparation and characterization of nanocrystalline cellulose/Eucommia ulmoides gum nanocomposite film. Carbohydr. Polym. 2018, 181, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Xie, F.; Zhang, J.; Zhang, L.; Yue, D. Bio-based cyclized Eucommia ulmoides gum elastomer for promising damping applications. RSC Adv. 2019, 9, 42367–42374. [Google Scholar] [CrossRef] [Green Version]
- Yao, K.; Nie, H.; Liang, Y.; Qiu, D.; He, A. Polymorphic crystallization behaviors in cis-1,4-polyisoprene/trans-1,4-polyisoprene blends. Polymer 2015, 80, 259–264. [Google Scholar] [CrossRef]
- Nie, H.; Ren, H.; Han, X.; He, A. Polymorphism analysis of trans-1,4-polyisoprene during melt-recrystallization. Polym. Test. 2019, 80, 106120. [Google Scholar] [CrossRef]
- Wu, Y.; Yao, K.; Nie, H.; He, A. Confirmation on the compatibility between cis-1,4-polyisoprene and trans-1,4-polyisoprene. Polymer 2018, 153, 271–276. [Google Scholar] [CrossRef]
- Zhang, J.; Xue, Z.; Yan, R. Damping performance of Eucommia ulmoides gum. Chin. J. Polym. Sci. 2010, 29, 157–163. [Google Scholar] [CrossRef]
- Yamazaki, H.; Takeda, M.; Kohno, Y.; Ando, H.; Urayama, K.; Takigawa, T. Dynamic viscoelasticity of poly (butyl acrylate) elastomers containing dangling chains with controlled lengths. Macromolecules 2011, 44, 8829–8834. [Google Scholar] [CrossRef]
- Zong, X.; Wang, S.; Li, N.; Li, H.; Zhang, X.; He, A. Regulation effects of trans-1, 4-poly (isoprene-co-butadiene) copolymer on the processability, aggregation structure and properties of chloroprene rubber. Polymer 2021, 213, 123325. [Google Scholar] [CrossRef]
- Zhang, F.; He, G.; Xu, K.; Wu, H.; Guo, S.; Zhang, C. Damping mechanism and different modes of molecular motion through the glass transition of chlorinated butyl rubber and petroleum resin blends. J. Appl. Polym. Sci. 2014, 131, 40464. [Google Scholar] [CrossRef]
- Sarina; Zhang, J.; Zhang, L. Dynamic mechanical properties of Eucommia ulmoides gum with different degree of cross-linking. Polym. Bull. 2012, 68, 2021–2032. [Google Scholar] [CrossRef]
- Dong, M.; Zhang, T.; Zhang, J.; Hou, G.; Yu, M.; Liu, L. Mechanism analysis of Eucommia ulmoides gum reducing the rolling resistance and the application study in green tires. Polym. Test. 2020, 87, 106539. [Google Scholar] [CrossRef]
- Meng, H.; Wen, J.; Zhao, H.; Wen, X. Optimization of locally resonant acoustic metamaterials on underwater sound absorption characteristics. J. Sound Vib. 2012, 331, 4406–4416. [Google Scholar] [CrossRef]
- Iannace, G.; Ciaburro, G.; Trematerra, A. Modelling sound absorption properties of broom fibers using artificial neural networks. Appl. Acoust. 2020, 163, 107239. [Google Scholar] [CrossRef]
- Federico, C.E.; Bouvard, J.L.; Combeaud, C.; Billon, N. Modelling strain rate and temperature dependent mechanical response of PMMAs at large deformation from below to above Tg. Polymer 2020, 202, 122710. [Google Scholar] [CrossRef]
- Federico, C.E.; Bouvard, J.L.; Combeaud, C.; Billon, N. Large strain/time dependent mechanical behaviour of PMMAs of different chain architectures. Application of time-temperature superposition principle. Polymer 2018, 139, 177–187. [Google Scholar] [CrossRef]
- Lee, S.; Yuk, J.S.; Park, H.; Kim, Y.W.; Shin, J. Multiblock thermoplastic elastomers derived from biodiesel, poly (propylene glycol), and l-lactide. ACS Sustain. Chem. Eng. 2017, 5, 8148–8160. [Google Scholar] [CrossRef]
- Calvo-Correas, T.; Martin, M.D.; Retegi, A.; Gabilondo, N.; Corcuera, M.A.; Eceiza, A. Synthesis and characterization of polyurethanes with high renewable carbon content and tailored properties. ACS Sustain. Chem. Eng. 2016, 4, 5684–5692. [Google Scholar] [CrossRef]
Component | Content | Component | Content |
---|---|---|---|
MPU | 100 | EUG | 100 |
Stearic acid | 0.5 | ZnO | 5 |
Active agent NH-2 | 2 | Stearic acid | 2 |
Accelerator D | 2 | Accelerator DZ | 1 |
Accelerator DM | 2 | Sulfur | 2 |
Sulfur | 2 |
MPU/EUG | 100/0 | 90/10 | 80/20 | 70/30 | 60/40 | 50/50 | 0/100 |
---|---|---|---|---|---|---|---|
ΔH (j.g−1) | 0 | 0 | 6.35 | 17.33 | 25.08 | 25.22 | 29.76 |
Xc (%) | 0 | 0 | 3.4 | 9.3 | 13.4 | 13.5 | 15.9 |
MPU/EUG | Tensile Strength (MPa) | Elongation at Break (%) | 100% Elongation Stress (MPa) | 300% Elongation Stress (MPa) | Hardness (Shao A) | Tensile Permanent Deformation (%) |
---|---|---|---|---|---|---|
100/0 | 30.2 | 597 | 1.6 | 2.7 | 56 | 12 |
90/10 | 28.5 | 585 | 1.5 | 2.7 | 55 | 17 |
80/20 | 25.5 | 609 | 1.5 | 2.5 | 54 | 26 |
70/30 | 25.2 | 701 | 1.7 | 2.5 | 59 | 34 |
60/40 | 20.9 | 726 | 1.9 | 2.9 | 65 | 67 |
50/50 | 16.9 | 679 | 2.1 | 3.4 | 69 | 130 |
0/100 | 17.8 | 514 | 5.5 | 9.3 | 90 | -- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Yin, D.; Deng, L.; Cao, R.; Hu, S.; Zhao, X.; Liu, L. Fabrication of Millable Polyurethane Elastomer/Eucommia Ulmoides Rubber Composites with Superior Sound Absorption Performance. Materials 2021, 14, 7487. https://doi.org/10.3390/ma14237487
Dong Y, Yin D, Deng L, Cao R, Hu S, Zhao X, Liu L. Fabrication of Millable Polyurethane Elastomer/Eucommia Ulmoides Rubber Composites with Superior Sound Absorption Performance. Materials. 2021; 14(23):7487. https://doi.org/10.3390/ma14237487
Chicago/Turabian StyleDong, Yuhang, Dexian Yin, Linhui Deng, Renwei Cao, Shikai Hu, Xiuying Zhao, and Li Liu. 2021. "Fabrication of Millable Polyurethane Elastomer/Eucommia Ulmoides Rubber Composites with Superior Sound Absorption Performance" Materials 14, no. 23: 7487. https://doi.org/10.3390/ma14237487
APA StyleDong, Y., Yin, D., Deng, L., Cao, R., Hu, S., Zhao, X., & Liu, L. (2021). Fabrication of Millable Polyurethane Elastomer/Eucommia Ulmoides Rubber Composites with Superior Sound Absorption Performance. Materials, 14(23), 7487. https://doi.org/10.3390/ma14237487