A Comparative Study on the Temperature Effect of Solid Birch Wood and Solid Beech Wood under Impact Loading
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wood Species, Quality and Test Matrix
2.2. Sample Conditioning
2.3. Testing Device and Measurement Technology
3. Results and Discussions
3.1. Temperature, Moisture and Density
3.2. Impact Bending Energy
3.3. Force–Deformation Behaviour and Fracture Energy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EWP | Engineered wood product |
LVL | Laminated veneer lumber |
L | Longitudinal direction |
R | Radial direction |
T | Tangential direction |
CV | Coefficient of variation |
r2 | Coefficient of determination |
Appendix A
Testing Method | Temperature-Level (°C) | n (−) | Etot,mean (J/cm2) | Etot,median (J/cm2) | CV(tot) (%) | Etot,min (J/cm2) | Etot,max (J/cm2) |
---|---|---|---|---|---|---|---|
Standard method | −30 | 10 | 9.3 | 10 | 28.4 | 4.8 | 13.0 |
0 | 10 | 8.6 | 8.8 | 24.7 | 4.4 | 11.8 | |
+30 | 10 (7) | 10.1 (8.8) | 8.8 (8.8) | 22.2 (16.7) | 8.3 (8.3) | 14.3 (10.1) | |
+60 | 10 | 8.1 | 8.8 | 20.0 | 5.3 | 9.8 | |
+90 | 10 | 8.5 | 8.6 | 21.3 | 5.3 | 11.5 | |
Deceleration method | −30 | 10 | 10.4 | 10.9 | 33.2 | 4.6 | 15.3 |
0 | 10 | 9.7 | 10.6 | 26.0 | 4.6 | 12.7 | |
+30 | 10 | 8.8 | 8.9 | 18.8 | 5.8 | 11.2 | |
+60 | 10 | 8.6 | 9.5 | 23.3 | 4.1 | 10.3 | |
+90 | 10 | 9.4 | 9.7 | 19.3 | 6.0 | 12.1 |
Testing Method | Temperature-Level (°C) | n (−) | Etot,mean (J/cm2) | Etot,median (J/cm2) | CV(tot) (%) | Etot,min (J/cm2) | Etot,max (J/cm2) |
---|---|---|---|---|---|---|---|
Standard method | −30 | 10 (7) | 11.9 (9.4) | 11.6 (9.3) | 44.6 (37.0) | 3.1 (3.1) | 20.3 (13.8) |
0 | 10 (9) | 12.9 (12.0) | 12.6 (10.8) | 32.7 (28.2) | 8.3 (8.3) | 21.0 (17.0) | |
+30 | 10 | 11.6 | 11.8 | 30.2 | 5.8 | 17.6 | |
+60 | 10 | 9.7 | 10.3 | 30.4 | 4.3 | 13.0 | |
+90 | 10 | 8.6 | 8.7 | 28.3 | 5.5 | 12.0 | |
Deceleration method | −30 | 10 | 9.6 | 10.1 | 38.3 | 3.3 | 15.7 |
0 | 10 | 12.5 | 10.2 | 37.2 | 8.3 | 21.1 | |
+30 | 10 | 13.0 | 13.4 | 35.4 | 5.8 | 21.0 | |
+60 | 10 | 10.9 | 11.9 | 31.5 | 4.2 | 14.4 | |
+90 | 10 | 9.5 | 9.5 | 25.4 | 6.6 | 13.1 |
Appendix B
Wood Species | Temperature-Level (°C) | n (−) | F3rd,mean (N) | F3rd,median (N) | CV(3rd) (%) | F3rd,min (N) | F3rd,max (N) |
---|---|---|---|---|---|---|---|
Birch | −30 | 10 | 5921 | 6078 | 10.3 | 5002 | 7103 |
0 | 10 | 5233 | 5240 | 9.0 | 4908 | 6489 | |
+30 | 10 | 4575 | 4596 | 6.6 | 4065 | 5193 | |
+60 | 10 | 4366 | 4496 | 6.3 | 3868 | 4726 | |
+90 | 10 | 4065 | 4278 | 7.6 | 3673 | 4696 | |
Beech | −30 | 10 | 6355 | 6674 | 23.7 | 4362 | 8594 |
0 | 10 | 6595 | 7194 | 14.5 | 5903 | 8817 | |
+30 | 10 | 5800 | 5827 | 13.9 | 4633 | 7339 | |
+60 | 10 | 4786 | 5121 | 14.7 | 4093 | 6047 | |
+90 | 10 | 4758 | 5062 | 8.5 | 4301 | 5354 |
References
- Baumann, G.; Stadlmann, A.; Kurzböck, C.; Feist, F. Crashsichere Holzverbundwerkstoffe in Leichtbaukarosserien der Zukunft (Crash-proof wood composites in lightweight car bodies of the future). ATZ-Automob. Z. 2019, 121, 54–59. (In German) [Google Scholar] [CrossRef]
- Müller, U.; Jost, T.; Kurzböck, C.; Stadlmann, A.; Kirschbichler, S.; Baumann, G.; Feist, F. Crash Simulation of wood and composite for future automotive engineering. Wood Mater. Sci. Eng. 2018, 15, 312–324. [Google Scholar] [CrossRef]
- Aguilera, A.; Davim, J.P. Research Developments in Wood Engineering and Technology; Engineering Science Reference (An Imprint of IGI Global): Hershey, PA, USA, 2014; ISBN 978-1-4666-4554-7. [Google Scholar]
- Fridley, K.J. Wood and Wood-Based Materials: Current Status and Future of a Structural Material. J. Mater. Civ. Eng. 2002, 14, 91–96. [Google Scholar] [CrossRef]
- Küch, W. Untersuchungen an Holz, Sperrholz und Schichthölzern im Hinblick auf ihre Verwendung im Flugzeugbau (Investigations on wood, plywood and laminated woods with regard to their use in aircraft construction). Holz als Roh-und Werkst. 1939, 2, 257–272. (In German) [Google Scholar] [CrossRef]
- Konnerth, J.; Müller, U.; Gindl, W.; Buksnowitz, C. Reliability of wood adhesive bonds in a 50 year old glider construction. Eur. J. Wood Wood Prod. 2012, 70, 381–384. [Google Scholar] [CrossRef]
- Müller, U.; Müller, H.; Teischinger, A. Durability of Wood Adhesives in 50 year old Aircraft and Glider Constructions. Wood Res. 2004, 49, 25–34. Available online: https://www.researchgate.net/publication/239450519_Durability_of_wood_Adhesives_in_50_year_old_aircraft_and_glider_Constructions (accessed on 12 November 2021).
- Falconer, J.; Rivas, B. De Havilland Mosquito Owners’ Workshop Manual; Haynes Publishing Group: Somerset, UK, 2013; ISBN 978-0-85733-360-5. [Google Scholar]
- Kraemer, O.J. Aufbau und Verleimung von Flugzeugsperrholz, Luftfahrtforschung; Band. 11, Heft 2 Zentrale für Technisch-Wissenschaftliches Berichtswesen über Luftfahrtforschung (Hrsg.); Verlag Oldenburg: München, Germany; Berlin, Germany, 1934; p. 33. (In German) [Google Scholar]
- Forest Products Laboratory (US.). Design of Wood Aircraft Structures; United States Government Publishing Office: Washington, DC, USA, 1944. [Google Scholar] [CrossRef]
- Cakiroglu, E.O.; Demir, A.; Aydin, I. Comparison of Birch and Beech Wood in Terms of Economic and Technological Properties for Plywood Manufacturing. Sci. J. Wood Technol. 2019, 70, 169–174. [Google Scholar] [CrossRef]
- Bayraktar, E.; Kaplan, D.; Schmidt, F.; Paqueton, H.; Grumbach, M. State of art of impact tensile test (ITT): Its historical development as a simulated crash test of industrial materials and presentation of new “ductile/brittle” transition diagrams. J. Mater. Process. Technol. 2008, 204, 313–326. [Google Scholar] [CrossRef]
- International Organization for Standardization. Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 10: Determination of Impact Bending Strength; ISO 13061–10–2017 10; International Organization of Standardization: Geneva, Switzerland, 2017. [Google Scholar]
- Kollmann, F. Technologie des Holzes und der Holzwerkstoffe (Technology of Wood and Wood-Based Materials); Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1982; ISBN 3-540-11778-4. (In German) [Google Scholar]
- Bröker, F.W.; Salamon, S. Instrumentierung eines Pendelschlagwerkes für die Holzprüfung (Instrumentation of an impact pendulum testing decive for wood characterization tests). Holz als Roh-und Werkst. 1989, 47, 93–97. (In German) [Google Scholar] [CrossRef]
- Bucar, D.G.; Merhar, M. Impact and dynamic bending strength determination of Norway Spruce by impact pendulum deceleration. BioResources 2015, 10, 4740–4750. [Google Scholar]
- Baumann, G.; Brandner, R.; Müller, U.; Kumpenza, C.; Stadlmann, A.; Feist, F. Temperature-Related Properties of Solid Birch Wood under Quasi-Static and Dynamic Bending. Materials 2020, 13, 5518. [Google Scholar] [CrossRef] [PubMed]
- Ghelmeziu, N. Untersuchungen über die Schlagfestigkeit von Bauhölzern (Investigations of the impact bending strength of structural timber). Holz als Roh-und Werkst. 1938, 15, 585–601. (In German) [Google Scholar] [CrossRef]
- Niemz, P. Physik des Holzes und der Holzwerkstoffe (Physics of Wood and Wood-Based Materials); DRW-Verlag Weinbrenner GmbH & CO.KG: Leinfelden-Echterdingen, Germany, 1993; ISBN 3-87181-324-9. (In German) [Google Scholar]
- Krech, H. Größe und zeitlicher Ablauf von Kraft und Durchbiegung beim Schlagbiegeversuch an Holz und ihr Zusammenhang mit der Bruchschlagarbeit (Magnitude and time sequence of force and deflection in impact bending tests on wood and their relationship to the impact bending strength). Holz als Roh-und Werkst. 1960, 18, 95–105. (In German) [Google Scholar] [CrossRef]
- International Organization for Standardization. Wood—Sampling Methods and General Requirements for Physical and Mechanical Testing of Small Clear Wood Specimens; ISO 3129–2019 11; International Organization of Standardization: Geneva, Switzerland, 2019. [Google Scholar]
- Sell, J. Eigenschaften und Kenngrössen von Holzarten; Baufachverlag: Zürich, Switzerland, 1997; ISBN 978-3855652235. (In German) [Google Scholar]
- Wagenführ, R. Holzatlas(Wood Atlas); Carl Hanser Verlag: München, Germany, 2006; ISBN 978-3-446-40649-0. (In German) [Google Scholar]
- Boruvka, V.; Novák, D.; Šedivka, P. Comparison and Analysis of Radial and Tangential Bending of Softwood and Hardwood at Static and Dynamic Loading. Forests 2020, 11, 896. [Google Scholar] [CrossRef]
- Winkler, D. Untersuchung des Energieabsorptionsvermögens an den Holzarten Birke, Buche und Pappel sowie an Holzbasierten Werkstoffen unter Berücksichtigung des Temperatur-und Holzfeuchteeinflusses (Investigation of the Energy Absorption Capacity of the Wood Species Birch, Beech and Poplar as well as of Wood-Based Materials, Taking into Account the Influence of Temperature and Wood Moisture). Master′s Thesis, Graz University of Technology, Graz, Austria, 2020. (In German). [Google Scholar]
- International Organization for Standardization. Standard Atmospheres for Conditioning and/or Testing–Specifications; ISO 554–1976 08; International Organization of Standardization: Geneva, Switzerland, 1976. [Google Scholar]
- ISO 13061–2–2014 10 01. Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 2: Determination of Density for Physical and Mechanical Tests; International Organization of Standardization: Geneva, Switzerland, 2014. [Google Scholar]
- Stadlmann, A.; Pramreiter, M.; Stingl, R.; Kurzböck, K.; Jost, T.; Müller, U. Durability of Wood Exposed to Alternating Climate Test and Natural Weathering. Forests 2020, 11, 953. [Google Scholar] [CrossRef]
- Burmester, A. Formbeständigkeit von Holz Gegenüber Feuchtigkeit—Grundlagen und Vergütungsverfahren (Dimensional Stability of Wood against Moisture—Basics and Refinement Methods); Bundesanstalt für Materialforschung und–prüfung (BAM): Berlin, Germany, 1970; ISSN 0938-5533. (In German) [Google Scholar]
- Wimmer, R.; Felber, G.; Teischinger, A. Biegemechanische Eigenschaften von Fichte in Abhängigkeit von Feuchtigkeit und Temperatur (Bending mechanical properties of spruce as a function of humidity and temperature). Holztechnologie 2011, 52, 41–45. (In German) [Google Scholar]
- Reiterer, A. The influence of temperature on the mode I fracture behaviour of wood. J. Mater. Sci. Lett. 2001, 20, 1905–1907. [Google Scholar] [CrossRef]
- Becker, G.; Ohnesorge, D.; Krowas, I.; Fink, S.; Tausch, A. Zwischenbericht zum Forschungsprojekt Thermisch Modifiziertes Holz Nach dem WTT-Thermo Verfahren (Interim Report on the Research Project Thermally Modified Wood According to the WTT-Thermo Process); Albert-Ludwigs-University Freiburg: Freiburg, Germany, 2008; Available online: http://www.hotholz.at/data/pdf/KurzberichtFestigkeit.pdf (accessed on 10 November 2021). (In German)
- Kretschmann, D.E. Wood Handbook: Mechanical Properties of Wood; Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 1999. [Google Scholar]
- Zhao, L.; Jiang, J.; Lu, J.; Zhan, T. Flexural property of wood in low temperature environment. Cold Reg. Sci. Technol. 2015, 116, 65–69. [Google Scholar] [CrossRef]
- Gerhards, C.C. Effect of moisture content and temperature on the mechanical properties of wood: An analysis of immediate effects. Wood Fiber Sci. 1982, 14, 4–36. Available online: http://wfs.swst.org/index.php/wfs/article/viewFile/501/501 (accessed on 14 October 2021).
- Smith, I.; Landis, E.; Gong, M. Fracture and Fatigue in Wood; John Wiley & Sons Ltd.: Chichester, UK, 2003; ISBN 0-471-48708-2. [Google Scholar]
Wood Species | Temperature-Level (°C) | n (–) | umean (%) | CV(u) (%) | ρ12,mean (kg/m3) | CV(ρ12) (%) |
---|---|---|---|---|---|---|
Birch | −30 | 10 | 10.6 | 3.7 | 621 | 4.5 |
0 | 10 | 10.7 | 5.2 | 614 | 3.7 | |
+30 | 10 | 8.3 | 2.7 | 626 | 3.8 | |
+60 | 10 | 4.7 | 5.2 | 604 | 4.9 | |
+90 | 10 | 1.0 | 16.4 | 613 | 3.2 | |
Beech | −30 | 10 | 10.7 | 3.5 | 794 | 2.5 |
0 | 10 | 10.4 | 4.2 | 820 | 3.6 | |
+30 | 10 | 8.9 | 5.6 | 815 | 4.2 | |
+60 | 10 | 5.7 | 9.9 | 811 | 2.9 | |
+90 | 10 | 1.4 | 22.7 | 800 | 2.3 |
Material Value | Authors | |||
---|---|---|---|---|
Sell [22] | Wagenführ [23] | Becker et al. [32] | Kretschmann [33] | |
Impact bending energy birch (J/cm2) | 7.5 to 10 * | 10 ** | - | 14.1 to 17.5 *** |
Impact bending energy beech (J/cm2) | 8 to 12 + | 10 + | 11.2 + | - |
Wood Species | Temperature- Level (°C) | n (−) | Einit (J/cm2) | CV(init) (%) | Eprop (J/cm2) | CV(prop) (%) | Etot (J/cm2) | CV(tot) (%) |
---|---|---|---|---|---|---|---|---|
Birch | −30 | 10 | 4.5 | 14.1 | 5.9 | 52.6 | 10.4 | 33.2 |
0 | 10 | 3.9 | 8.1 | 5.8 | 42.2 | 9.7 | 26.0 | |
+30 | 10 | 3.4 | 8.8 | 5.4 | 29.2 | 8.8 | 18.8 | |
+60 | 10 | 3.3 | 8.1 | 5.3 | 34.8 | 8.6 | 23.3 | |
+90 | 10 | 3.0 | 6.3 | 6.4 | 28.4 | 9.4 | 19.3 | |
Beech | −30 | 10 | 4.6 | 24.2 | 5.0 | 55.6 | 9.6 | 38.3 |
0 | 10 | 5.0 | 12.6 | 7.5 | 59.9 | 12.5 | 37.2 | |
+30 | 10 | 4.5 | 15.0 | 8.5 | 49.1 | 13.0 | 35.4 | |
+60 | 10 | 3.8 | 13.8 | 7.1 | 42.6 | 10.9 | 31.5 | |
+90 | 10 | 3.5 | 8.5 | 6.0 | 37.5 | 9.5 | 25.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baumann, G.; Brandner, R.; Müller, U.; Stadlmann, A.; Feist, F. A Comparative Study on the Temperature Effect of Solid Birch Wood and Solid Beech Wood under Impact Loading. Materials 2021, 14, 7616. https://doi.org/10.3390/ma14247616
Baumann G, Brandner R, Müller U, Stadlmann A, Feist F. A Comparative Study on the Temperature Effect of Solid Birch Wood and Solid Beech Wood under Impact Loading. Materials. 2021; 14(24):7616. https://doi.org/10.3390/ma14247616
Chicago/Turabian StyleBaumann, Georg, Reinhard Brandner, Ulrich Müller, Alexander Stadlmann, and Florian Feist. 2021. "A Comparative Study on the Temperature Effect of Solid Birch Wood and Solid Beech Wood under Impact Loading" Materials 14, no. 24: 7616. https://doi.org/10.3390/ma14247616
APA StyleBaumann, G., Brandner, R., Müller, U., Stadlmann, A., & Feist, F. (2021). A Comparative Study on the Temperature Effect of Solid Birch Wood and Solid Beech Wood under Impact Loading. Materials, 14(24), 7616. https://doi.org/10.3390/ma14247616