Highly Porous Expanded Graphite: Thermal Shock vs. Programmable Heating
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of Expanded Graphite
2.2. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sorokina, N.E.; Redchitz, A.V.; Ionov, S.G.; Avdeev, V.V. Different exfoliated graphite as a base of sealing materials. J. Phys. Chem. Solids 2006, 67, 1202–1204. [Google Scholar] [CrossRef]
- Pandey, I.; Tiwari, J.D.; Saha, T.K.; Khosla, A.; Furukawa, H.; Sekhar, P.K. Black carbon paper based polyanthraquinone coated exfoliated graphite for flexible paper battery. Microsyst. Technol. 2019, 3, 1–9. [Google Scholar] [CrossRef]
- Huang, L.; Rao, W.; Fan, L.; Xu, J.; Bai, Z.; Xu, W.; Bao, H. Paper electrodes coated with partially-exfoliated graphite and polypyrrole for high-performance flexible supercapacitors. Polymers 2018, 10, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raghunandanan, A.; Yeddala, M.; Padikassu, P.; Pitchai, R. Partially Exfoliated Graphite Paper as Free-Standing Electrode for Supercapacitors. ChemistrySelect 2018, 3, 5032–5039. [Google Scholar] [CrossRef]
- Pajarito, B.B.; Cayabyab, C.A.L.; Costales, P.A.C.; Francisco, J.R. Exfoliated graphite/acrylic composite film as hydrophobic coating of 3D-printed polylactic acid surfaces. J. Coat. Technol. Res. 2019, 16, 1133–1140. [Google Scholar] [CrossRef]
- Berdyugina, I.S.; Steksova, Y.P.; Shibaev, A.A.; Maksimovskii, E.A.; Bannov, A.G. Thermal degradation of epoxy composites based on thermally expanded graphite and multiwalled carbon nanotubes. Russ. J. Appl. Chem. 2016, 89, 1447–1453. [Google Scholar] [CrossRef]
- Yim, Y.-J.; Park, S.-J. Effect of silver-plated expanded graphite addition on thermal and electrical conductivities of epoxy composites in the presence of graphite and copper. Compos. Part A Appl. Sci. Manuf. 2019, 123, 253–259. [Google Scholar] [CrossRef]
- Bannov, A.G.; Nazarenko, O.B.; Maksimovskii, E.A.; Popov, M.V.; Berdyugina, I.S. Thermal behavior and flammability of epoxy composites based on multi-walled carbon nanotubes and expanded graphite: A comparative study. Appl. Sci. 2020, 10, 6928. [Google Scholar] [CrossRef]
- He, J.; Song, L.; Yang, H.; Ren, X.; Xing, L. Preparation of Sulfur-Free Exfoliated Graphite by a Two-Step Intercalation Process and Its Application for Adsorption of Oils. J. Chem. 2017, 2017, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Rachiy, B.I.; Budzulyak, I.M.; Ivanenko, E.A.; Revo, S.L. A composite of nanoporous carbon and thermally exfoliated graphite as an effective electrode material for supercapacitors. Surf. Eng. Appl. Electrochem. 2015, 51, 501–508. [Google Scholar] [CrossRef]
- Bannov, A.G.; Yusin, S.I.; Timofeeva, A.A.; Dyukova, K.D.; Ukhina, A.V.; Maksimovskii, E.A.; Popov, M.V. Synthesis of exfoliated graphite and its use as an electrode in supercapacitors. Prot. Met. Phys. Chem. Surf. 2016, 52, 645–652. [Google Scholar] [CrossRef]
- Dong, X.; Chen, H.; Lai, H.; Wang, L.; Wang, J.; Fang, W.; Gao, C. A graphitized expanded graphite cathode for aluminum-ion battery with excellent rate capability. J. Energy Chem. 2022, 66, 38–44. [Google Scholar] [CrossRef]
- Hou, S.; Li, J.; Huang, X.; Wang, X.; Ma, L.; Shen, W.; Kang, F.; Huang, Z.-H. Silver nanoparticles-loaded exfoliated graphite and its anti-bacterial performance. Appl. Sci. 2017, 7, 852. [Google Scholar] [CrossRef] [Green Version]
- Mangu, R.; Rajaputra, S.; Singh, V.P. MWCNT-polymer composites as highly sensitive and selective room temperature gas sensors. Nanotechnology 2011, 22, 215502. [Google Scholar] [CrossRef]
- Wu, K.-H.; Huang, W.-C.; Hung, W.-C.; Tsai, C.-W. Modified expanded graphite/Fe3O4 composite as an adsorbent of methylene blue: Adsorption kinetics and isotherms. Mater. Sci. Eng. B 2021, 266, 115068. [Google Scholar] [CrossRef]
- Chen, X.; Li, H.; Zeng, T.; Zhang, Y.; Wan, Q.; Li, Y.; Yang, N. Three-dimensional catalyst systems from expanded graphite and metal nanoparticles for electrocatalytic oxidation of liquid fuels. Nanoscale 2019, 11, 7952–7958. [Google Scholar] [CrossRef]
- Saidaminov, M.I.; Maksimova, N.V.; Zatonskih, P.V.; Komarov, A.D.; Lutfullin, M.A.; Sorokina, N.E.; Avdeev, V.V. Thermal decomposition of graphite nitrate. Carbon 2013, 59, 337–343. [Google Scholar] [CrossRef]
- Yin, G.; Sun, Z.; Gao, Y.; Xu, S. Preparation of expanded graphite for malachite green dye removal from aqueous solution. Microchem. J. 2021, 166, 106190. [Google Scholar] [CrossRef]
- Jin, S.; Xie, L.S.; Ma, Y.L.; Han, J.J.; Xia, Z.; Zhang, G.X.; Dong, S.M.; Wang, Y.Y. Low-temperature expanded graphite for preparation of graphene sheets by liquid-phase method. J. Phys. Conf. Ser. 2009, 188, 012040. [Google Scholar] [CrossRef]
- Yakovlev, A.V.; Finaenov, A.I.; Zabud’kov, S.L.; Yakovleva, E.V. Thermally expanded graphite: Synthesis, properties, and prospects for use. Russ. J. Appl. Chem. 2006, 79, 1741–1751. [Google Scholar] [CrossRef]
- Hong, X.; Chung, D.D.L. Exfoliated graphite with relative dielectric constant reaching 360, obtained by exfoliation of acid- intercalated graphite flakes without subsequent removal of the residual acidity. Carbon 2015, 91, 1–10. [Google Scholar] [CrossRef]
- Afanasov, I.M.; Shornikova, O.N.; Vlasov, I.I.; Kogan, E.V.; Seleznev, A.N.; Avdeev, V.V. Porous carbon materials based on exfoliated graphite. Inorg. Mater. 2009, 45, 135–139. [Google Scholar] [CrossRef]
- Li, M.; Liu, J.; Pan, S.; Zhang, J.; Liu, Y.; Liu, J.; Lu, H. Highly Oriented Graphite Aerogel Fabricated by Confined Liquid-Phase Expansion for Anisotropically Thermally Conductive Epoxy Composites. ACS Appl. Mater. Interfaces 2020, 12, 27476–27484. [Google Scholar] [CrossRef] [PubMed]
- Van Heerden, X.; Badenhorst, H. The influence of three different intercalation techniques on the microstructure of exfoliated graphite. Carbon 2015, 88, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Nan, F.; Su, L.; Zhang, S.; He, Y. Effect of Ammonium Bicarbonate on Intercalation and Exfoliation of Graphite Materials. J. Nanomater. 2019, 2019, 1–8. [Google Scholar] [CrossRef]
- Chung, D.D.L. A review of exfoliated graphite. J. Mater. Sci. 2015, 51, 554–568. [Google Scholar] [CrossRef]
- Wang, A.; Chung, D.D.L. Dielectric and electrical conduction behavior of carbon paste electrochemical electrodes, with decoupling of carbon, electrolyte and interface contributions. Carbon 2014, 72, 135–151. [Google Scholar] [CrossRef]
- Goudarzi, R.; Motlagh, G.H. The effect of graphite intercalated compound particle size and exfoliation temperature on porosity and macromolecular diffusion in expanded graphite. Heliyon 2019, 5, e02595. [Google Scholar] [CrossRef] [Green Version]
- Asghar, H.M.A.; Hussain, S.N.; Sattar, H.; Brown, N.W.; Roberts, E.P.L. Environmentally friendly preparation of exfoliated graphite. J. Ind. Eng. Chem. 2014, 20, 1936–1941. [Google Scholar] [CrossRef]
- Asghar, H.M.A.; Hussain, S.N.; Sattar, H.; Brown, N.W.; Roberts, E.P.L. Potential Graphite Materials for the Synthesis of GICs. Chem. Eng. Commun. 2015, 202, 508–512. [Google Scholar] [CrossRef]
- Seredych, M.; Tamashausky, A.V.; Bandosz, T.J. Surface features of exfoliated graphite/bentonite composites and their importance for ammonia adsorption. Carbon 2008, 46, 1241–1252. [Google Scholar] [CrossRef]
- Manoj, B.; Kunjomana, A.G. Study of stacking structure of amorphous carbon by X-ray diffraction technique. Int. J. Electrochem. Sci. 2012, 7, 3127–3134. [Google Scholar]
- Bannov, A.G.; Uvarov, N.F.; Ukhina, A.V.; Chukanov, I.S.; Dyukova, K.D.; Kuvshinov, G.G. Structural changes in carbon nanofibers induced by ball milling. Carbon 2012, 50, 1090–1098. [Google Scholar] [CrossRef]
- Shiraishi, M.; Inagaki, M. Chapter 10—X-ray Diffraction Methods to Study Crystallite Size and Lattice Constants of Carbon Materials. In Carbon Alloys; Yasuda, E., Inagaki, M., Kaneko, K., Endo, M., Oya, A., Tanabe, Y.B.T.-C.A., Eds.; Elsevier Science: Oxford, UK, 2003; pp. 161–173. ISBN 978-0-08-044163-4. [Google Scholar]
- Maire, J.; Mering, J. Chemistry and Physics of Carbon; CRC Press: Boca Raton, FL, USA, 1975. [Google Scholar]
- Bannov, A.G.; Popov, M.V.; Kurmashov, P.B. Thermal analysis of carbon nanomaterials: Advantages and problems of interpretation. J. Therm. Anal. Calorim. 2020, 142, 349–370. [Google Scholar] [CrossRef]
- Leshin, V.S.; Sorokina, N.E.; Avdeev, V.V. Electrochemical synthesis and thermal properties of graphite bisulfate. Inorg. Mater. 2004, 40, 649–655. [Google Scholar] [CrossRef]
- Huang, J.; Tang, Q.; Liao, W.; Wang, G.; Wei, W.; Li, C. Green Preparation of Expandable Graphite and Its Application in Flame-Resistance Polymer Elastomer. Ind. Eng. Chem. Res. 2017, 56, 5253–5261. [Google Scholar] [CrossRef]
- Hong, Y.; Wang, Z.; Jin, X. Sulfuric acid intercalated graphite oxide for graphene preparation. Sci. Rep. 2013, 3, 1–6. [Google Scholar] [CrossRef]
- Xu, C.; Jiao, C.; Yao, R.; Lin, A.; Jiao, W. Adsorption and regeneration of expanded graphite modified by CTAB-KBr/H3PO4 for marine oil pollution. Environ. Pollut. 2018, 233, 194–200. [Google Scholar] [CrossRef]
- Li, W.; Han, C.; Liu, W.; Zhang, M.; Tao, K. Expanded graphite applied in the catalytic process as a catalyst support. Catal. Today 2007, 125, 278–281. [Google Scholar] [CrossRef]
- Lan, R.; Su, W.; Li, J. Preparation and catalytic performance of expanded graphite for oxidation of organic pollutant. Catalysts 2019, 9, 280. [Google Scholar] [CrossRef] [Green Version]
- Salvatore, M.; Carotenuto, G.; De Nicola, S.; Camerlingo, C.; Ambrogi, V.; Carfagna, C. Synthesis and Characterization of Highly Intercalated Graphite Bisulfate. Nanoscale Res. Lett. 2017, 12, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sing, K.S.W.; Williams, R.T. Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt. Sci. Technol. 2004, 22, 773–782. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Zaaba, N.I.; Foo, K.L.; Hashim, U.; Tan, S.J.; Liu, W.W.; Voon, C.H. Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence. Procedia Eng. 2017, 184, 469–477. [Google Scholar] [CrossRef]
- Greenwood, N.N. Spectroscopic Properties of Inorganic and Organometallic Compounds; Royal Society of Chemistry: London, UK, 2007; Volume 5, p. 630. [Google Scholar] [CrossRef]
- Hao, R.; Qian, W.; Zhang, L.; Hou, Y. Aqueous dispersions of TCNQ-anion-stabilized graphene sheets. Chem. Commun. 2008, 48, 6576–6578. [Google Scholar] [CrossRef] [PubMed]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef]
- Seredych, M.; Tamashausky, A.V.; Bandosz, T.J. Graphite oxides obtained from porous graphite: The role of surface chemistry and texture in ammonia retention at ambient conditions. Adv. Funct. Mater. 2010, 20, 1670–1679. [Google Scholar] [CrossRef]
- Justh, N.; Berke, B.; László, K.; Szilágyi, I.M. Thermal analysis of the improved Hummers’ synthesis of graphene oxide. J. Therm. Anal. Calorim. 2018, 131, 2267–2272. [Google Scholar] [CrossRef] [Green Version]
- Liao, N.; Li, Y.; Shan, J.; Zhu, T.; Sang, S.; Jia, D. Improved oxidation resistance of expanded graphite through nano SiC coating. Ceram. Int. 2018, 44, 3319–3325. [Google Scholar] [CrossRef]
- Saidaminov, M.I.; Maksimova, N.V.; Avdeev, V.V. Expandable graphite modification by boric acid. J. Mater. Res. 2012, 27, 1054–1059. [Google Scholar] [CrossRef]
- Savchenko, D.V.; Serdan, A.A.; Morozov, V.A.; van Tendeloo, G.; Ionov, S.G. Improvement of the oxidation stability and the mechanical properties of flexible graphite foil by boron oxide impregnation. New Carbon Mater. 2012, 27, 12–18. [Google Scholar] [CrossRef]
- Qiu, Y.; Moore, S.; Hurt, R.; Külaots, I. Influence of external heating rate on the structure and porosity of thermally exfoliated graphite oxide. Carbon 2017, 111, 651–657. [Google Scholar] [CrossRef] [Green Version]
- Stankovich, S.; Dikin, D.; Piner, R.D.; Kohlhaas, K.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565. [Google Scholar] [CrossRef]
- Kang, F.; Zheng, Y.-P.; Wang, H.-N.; Nishi, Y.; Inagaki, M. Effect of preparation conditions on the characteristics of exfoliated graphite. Carbon 2002, 40, 1575–1581. [Google Scholar] [CrossRef]
- Tichapondwa, S.M.; Tshemese, S.; Mhike, W. Adsorption of phenol and chromium (VI) pollutants in wastewater using exfoliated graphite. Chem. Eng. Trans. 2018, 70, 847–852. [Google Scholar] [CrossRef]
- Krawczyk, P.; Gurzęda, B. Electrochemical properties of exfoliated graphite affected by its two-step modification. J. Solid State Electrochem. 2016, 20, 361–369. [Google Scholar] [CrossRef]
Sample | Temperature, °C | Synthesis Technique |
---|---|---|
TEG1-400 | 400 | Programmable heating |
TEG1-500 | 500 | Programmable heating |
TEG1-600 | 600 | Programmable heating |
TEG1-700 | 700 | Programmable heating |
TEG2-400 | 400 | Thermal shock |
TEG2-1000 | 1000 | Thermal shock |
Element | Concentration, at.% | ||||||
---|---|---|---|---|---|---|---|
Intercalated Graphite | TEG1-400 | TEG1-500 | TEG1-600 | TEG1-700 | TEG2-400 | TEG2-1000 | |
C | 87.31 | 95.13 | 96.47 | 95.69 | 97.37 | 93.26 | 97.46 |
O | 11.06 | 4.32 | 3.05 | 3.75 | 2.17 | 6.21 | 2.14 |
S | 1.14 | 0.29 | 0.28 | 0.23 | 0.14 | 0.37 | 0.05 |
Sample | Total Surface Area, m2/g | Surface Area of Micropores, m2/g | Surface Area of Mesopores, m2/g | Total Pore Volume, cm3/g | Average Pore Diameter, nm | Yield, % | Bulk Density, g/cm3 |
---|---|---|---|---|---|---|---|
TEG1-400 | 699 | 261 | 438 | 0.945 | 5.4 | 89.2 | 0.058 |
TEG1-500 | 626 | 163 | 463 | 0.736 | 4.7 | 79.0 | 0.018 |
TEG1-600 | 257 | 85 | 172 | 0.325 | 5.0 | 78.7 | 0.018 |
TEG1-700 | 229 | 95 | 134 | 0.231 | 4.0 | 77.8 | 0.017 |
TEG2-400 | 184 | 90 | 94 | 0.198 | 4.3 | 77.4 | 0.016 |
TEG2-1000 | 639 | 204 | 435 | 0.761 | 4.8 | 76.9 | 0.019 |
Sample | D Peak Position, cm−1 | DFWHM, cm−1 | G Peak Position, cm−1 | GFWHM, cm−1 | I (D)/I (G) |
---|---|---|---|---|---|
TEG1-400 | 1357 | 53 | 1584 | 20 | 0.1 |
TEG1-500 | 1359 | 19 | 1584 | 17 | 0.0104 |
TEG1-600 | 1355 | 36 | 1584 | 16 | 0.0125 |
TEG1-700 | 1357 | 33 | 1584 | 18 | 0.038 |
TEG2-400 | 1357 | 22 | 1584 | 17 | 0.014 |
TEG2-1000 | 1357 | 22 | 1584 | 15 | 0.007 |
Sample | Peak Onset, Tonset (°C) | Peak Maximum, Tmax (°C) | Peak End, Tend (°C) | Heat Release, J/g |
---|---|---|---|---|
TEG1-400 | 652 | 740 | 800 | 9582 |
TEG1-500 | 675 | 764 | 812 | 12,207 |
TEG1-600 | 639 | 748 | 829 | 12,975 |
TEG1-700 | 637 | 753 | 828 | 12,789 |
TEG2-400 | 642 | 773 | 841 | 11,967 |
TEG2-1000 | 641 | 733 | 803 | 13,773 |
Material | Precursor | Specific Surface Area (BET), m2/g | Synthesis Technique | Synthesis Temperature, °C | Reference |
---|---|---|---|---|---|
Expanded graphite | Intercalated graphite | 678 | Programmable heating (20 °C/min) | 400 | This work |
Expanded graphite | Graphite oxide (modified Hummers method) | 400 | Thermal shock (1570 °C/min) | 500–900 | [55] |
Expanded graphite | Graphite bisulfate | 77 | Thermal shock | 1300 | [1] |
Expanded graphite | Graphene oxide(Hummers method) | 466 | Exfoliation in aqueous media | n/a | [56] |
Expanded graphite | Expandable natural graphite flake (interca- lated by using sulfuric acid) from | 45 | Thermal shock | 900 | [21] |
Expanded graphite | Expandable graphite (H2SO4–GIC) | 10–40 | Thermal shock | 400–1000 | [57] |
Expanded graphite | Expandable graphite | 22.4 | Thermal shock | 600 | [58] |
Sulfur-free Expanded graphite | GIC | 245 | Thermal shock | 950 | [9] |
Re-expanded EG | Expanded EG | 33.5 | Thermal shock | 800 | [59] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bannov, A.G.; Ukhina, A.V.; Maksimovskii, E.A.; Prosanov, I.Y.; Shestakov, A.A.; Lapekin, N.I.; Lazarenko, N.S.; Kurmashov, P.B.; Popov, M.V. Highly Porous Expanded Graphite: Thermal Shock vs. Programmable Heating. Materials 2021, 14, 7687. https://doi.org/10.3390/ma14247687
Bannov AG, Ukhina AV, Maksimovskii EA, Prosanov IY, Shestakov AA, Lapekin NI, Lazarenko NS, Kurmashov PB, Popov MV. Highly Porous Expanded Graphite: Thermal Shock vs. Programmable Heating. Materials. 2021; 14(24):7687. https://doi.org/10.3390/ma14247687
Chicago/Turabian StyleBannov, Alexander G., Arina V. Ukhina, Evgenii A. Maksimovskii, Igor Yu. Prosanov, Artyom A. Shestakov, Nikita I. Lapekin, Nikita S. Lazarenko, Pavel B. Kurmashov, and Maksim V. Popov. 2021. "Highly Porous Expanded Graphite: Thermal Shock vs. Programmable Heating" Materials 14, no. 24: 7687. https://doi.org/10.3390/ma14247687
APA StyleBannov, A. G., Ukhina, A. V., Maksimovskii, E. A., Prosanov, I. Y., Shestakov, A. A., Lapekin, N. I., Lazarenko, N. S., Kurmashov, P. B., & Popov, M. V. (2021). Highly Porous Expanded Graphite: Thermal Shock vs. Programmable Heating. Materials, 14(24), 7687. https://doi.org/10.3390/ma14247687