Three-Dimensional Free Vibration Analyses of Preloaded Cracked Plates of Functionally Graded Materials via the MLS-Ritz Method
Abstract
:1. Introduction
2. Mathematical Formulation
2.1. Static Stress Analyses
2.2. Vibration Analyses
2.3. Admissible Functions
2.4. Boundary Conditions
3. Convergence and Comparison Studies
4. Numerical Results
4.1. Effects of Initial Stress Components
4.2. Vibration Frequencies of Side-Cracked Plates
4.3. Vibration Frequencies of Internally Cracked Plates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Jha, D.K.; Kant, T.; Singh, R.K. A critical review of recent research on functionally graded plates. Compos. Struct. 2013, 96, 833–849. [Google Scholar] [CrossRef]
- Gupta, A.; Talha, M. Recent development in modeling and analysis of functionally graded materials and structures. Prog. Aerosp. Sci. 2015, 79, 1–14. [Google Scholar] [CrossRef]
- Swaminathan, K.; Naveenkumar, D.T.; Zenkour, A.M.; Carrera, E. Stress, vibration and buckling analyses of FGM plates—A state-of-the-art review. Compos. Struct. 2015, 120, 10–31. [Google Scholar] [CrossRef]
- Zhang, N.; Khan, T.; Guo, H.; Shi, S.; Zhong, W.; Zhang, W. Functionally graded materials: An overview of stability, buckling, and free vibration analysis. Adv. Mater. Sci. Eng. 2019, 2019, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Reddy, J.N.; Cheng, Z.Q. Frequency of functionally graded plates with three-dimensional asymptotic approach. J. Eng. Mech. 2003, 129, 896–900. [Google Scholar] [CrossRef]
- Vel, S.S.; Batra, R.C. Three-dimensional exact solution for the vibration of functionally graded rectangular plates. J. Sound Vib. 2004, 272, 703–730. [Google Scholar] [CrossRef]
- Abrate, S. Free vibration, buckling, and static deflections of functionally graded plates. Compos. Sci. Technol. 2006, 66, 2383–2394. [Google Scholar] [CrossRef]
- Hosseini-Hashemi, S.; Fadaee, M.; Atashipour, S.R. Study on the free vibration of thick functionally graded rectangular plates according to a new exact closed-form procedure. Compos. Struct. 2011, 93, 722–735. [Google Scholar] [CrossRef]
- Sekkal, M.; Fahsi, B.; Tounsi, A.; Mahmoud, S.R. A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate. Steel Compos. Struct. 2017, 25, 389–401. [Google Scholar]
- Huo, R.L.; Liu, W.Q.; Wu, P.; Zhou, D. Analytical solutions for sandwich plates considering permeation effect by 3-D elasticity theory. Steel Compos. Struct. 2017, 25, 127–139. [Google Scholar]
- Huang, C.S.; Huang, S.H. Analytical solutions based on Fourier cosine series for the free vibrations of functionally graded material rectangular Mindlin plates. Materials 2020, 13, 3820. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.Y. Three-dimensional free vibration analysis of functionally graded annular plates using the Chebyshev–Ritz method. Mater. Des. 2008, 29, 1518–1525. [Google Scholar] [CrossRef]
- Li, Q.; Iu, V.P.; Kou, K.P. Three-dimensional vibration analysis of functionally graded material plates in thermal environment. J. Sound Vib. 2008, 311, 498–515. [Google Scholar] [CrossRef]
- Wang, Q.S.; Shi, D.Y.; Liang, Q.; Shi, X.J. A unified solution for vibration analysis of functionally graded circular, annular and sector plates with general boundary conditions. Compos. Part B-Eng. 2016, 88, 264–294. [Google Scholar] [CrossRef]
- Malekzadeh, P.; Shahpari, S.A.; Ziaee, H.R. Three-dimensional free vibration of thick functionally graded annular plates in thermal environment. J. Sound Vib. 2010, 329, 425–442. [Google Scholar] [CrossRef]
- Jalali, M.H.; Shahriari, B.; Zargar, O.; Baghani, M.; Baniassadi, M. Free vibration analysis of rotating functionally graded annular disc of variable thickness using generalized differential quadrature method. Sci. Iran. 2018, 25, 728–740. [Google Scholar] [CrossRef] [Green Version]
- Ersoy, H.; Mercan, K.; Civalek, O. Frequencies of FGM shells and annular plates by the methods of discrete singular convolution and differential quadrature methods. Compos. Struct. 2018, 183, 7–20. [Google Scholar] [CrossRef]
- Ferreira, A.J.M.; Batra, R.C.; Roque, C.M.C.; Qian, L.F.; Jorge, R.M.N. Natural frequencies of functionally graded plates by a meshless method. Compos. Struct. 2006, 75, 593–600. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Thai, C.H.; Nguyen-Xuan, H. A novel computational approach for functionally graded isotropic and sandwich plate structures based on a rotation-free meshfree method. Thin-Walled Struct. 2016, 107, 473–488. [Google Scholar] [CrossRef]
- Tan, P.F.; Nhon, N.T.; Rabczuk, T.; Zhou, K. Static, dynamic and buckling analyses of 3D FGM plates and shells via an isogeometric-meshfree coupling approach. Compos. Struct. 2018, 198, 35–50. [Google Scholar] [CrossRef]
- Talha, M.; Singh, B.N. Static response and free vibration analysis of FGM plates using higher order shear deformation theory. Appl. Math. Model. 2010, 34, 3991–4011. [Google Scholar] [CrossRef]
- Lezgy-Nazargah, M.; Meshkani, Z. An efficient partial mixed finite element model for static and free vibration analyses of FGM plates rested on two-parameter elastic foundations. Struct. Eng. Mech. 2018, 66, 665–676. [Google Scholar]
- Parida, S.; Mohanty, S.C. Free vibration analysis of functionally graded skew plate in thermal environment using higher order theory. Int. J. Appl. Mech. 2018, 10, 1850007. [Google Scholar] [CrossRef]
- Huang, C.S.; Lin, Y.J. Fourier series solutions for vibrations of a rectangular plate with a straight through crack. Appl. Math. Model. 2016, 40, 10389–10403. [Google Scholar] [CrossRef]
- Rao, L.B.; Rao, C.K. Exact closed-form solution of vibrations of a generally restrained circular plate with crack and weakened along an internal concentric circle. Int. J. Acoust. Vib. 2017, 22, 334–347. [Google Scholar] [CrossRef]
- Stahl, B.; Keer, L.M. Vibration and stability of cracked rectangular plates. Int. J. Solids Struct. 1972, 8, 69–91. [Google Scholar] [CrossRef]
- Aggarwala, B.D.; Ariel, P.D. Vibration and bending of a cracked plate. Rozpr. Inz. 1981, 29, 295–310. [Google Scholar]
- Yuan, J.; Dickinson, S.M. The flexural vibration of rectangular plate systems approached by using artificial springs in the Rayleigh-Ritz method. J. Sound Vib. 1992, 159, 39–55. [Google Scholar] [CrossRef]
- Liew, K.M.; Hung, K.C.; Lim, M.K. A solution method for analysis of cracked plates under vibration. Eng. Fract. Mech. 1994, 48, 393–404. [Google Scholar] [CrossRef]
- Huang, C.S.; Leissa, A.W. Vibration analysis of rectangular plates with side cracks via the Ritz method. J. Sound Vib. 2009, 323, 974–988. [Google Scholar] [CrossRef]
- Huang, C.S.; Chan, C.W. Vibration analyses of cracked plates by the Ritz method with moving least-squares interpolation functions. Int. J. Struct. Stab. Dyn. 2014, 14, 1350060. [Google Scholar] [CrossRef]
- Shahverdi, H.; Navardi, M.M. Free vibration analysis of cracked thin plates using generalized differential quadrature element method. Struct. Eng. Mech. 2017, 62, 345–355. [Google Scholar] [CrossRef]
- Ranjbaran, M.; Seifi, R. Analysis of free vibration of an isotropic plate with surface or internal long crack using generalized differential quadrature method. J. Strain Anal. Eng. Des. 2020, 55, 42–52. [Google Scholar] [CrossRef]
- Joshi, P.V.; Gupta, A.; Jain, N.K.; Salhotra, R.; Rawani, A.M.; Ramtekkar, G.D. Effect of thermal environment on free vibration and buckling of partially cracked isotropic and FGM micro plates based on a non-classical Kirchhoff’s plate theory: An analytical approach. Int. J. Mech. Sci. 2017, 131, 155–170. [Google Scholar] [CrossRef]
- Zhang, H.J.; Wu, J.Z.; Wang, D.D. Free vibration analysis of cracked thin plates by quasi-convex coupled isogeometric-meshfree method. Front. Struct. Civ. Eng. 2015, 9, 405–419. [Google Scholar] [CrossRef]
- Qian, G.L.; Gu, S.N.; Jiang, J.S. A finite element model of cracked plates and application to vibration problems. Comput. Struct. 1991, 39, 483–487. [Google Scholar]
- Su, R.K.L.; Leung, A.Y.T.; Wong, S.C. Vibration of cracked Kirchhoff’s plates. Key Eng. Mater. 1998, 145–149, 167–172. [Google Scholar] [CrossRef]
- Lee, H.P.; Lim, S.P. Vibration of cracked rectangular plates including transverse shear deformation and rotary inertia. Comput. Struct. 1993, 49, 715–718. [Google Scholar] [CrossRef]
- Huang, C.S.; Leissa, A.W.; Li, R.S. Accurate vibration analysis of thick, cracked rectangular plates. J. Sound Vib. 2011, 330, 2079–2093. [Google Scholar] [CrossRef]
- Peng, L.X.; Tao, Y.P.; Liang, K.; Li, L.Y.; Qin, X.; Zeng, Z.P.; Teng, X.D. Simulation of a crack in stiffened plates via a meshless formulation and FSDT. Int. J. Mech. Sci. 2017, 131, 880–893. [Google Scholar] [CrossRef]
- Ma, C.C.; Huang, C.H. Experimental and numerical analysis of vibrating cracked plates at resonant frequencies. Exp. Mech. 2001, 41, 8–18. [Google Scholar] [CrossRef]
- Azam, M.S.; Ranjan, V.; Kumar, B. Free vibration analysis of rhombic plate with central crack. Int. J. Acoust. Vib. 2017, 22, 481–492. [Google Scholar] [CrossRef]
- Yu, T.T.; Bui, T.Q.; Liu, P.; Hirose, S. A stabilized discrete shear gap extended finite element for the analysis of cracked Reissner-Mindlin plate vibration problems involving distorted meshes. Int. J. Mech. Mater. Des. 2016, 12, 85–107. [Google Scholar] [CrossRef]
- Yang, G.; Hu, D.; Han, X.; Ma, G.W. An extended edge-based smoothed discrete shear gap method for free vibration analysis of cracked Reissner-Mindlin plate. Appl. Math. Model. 2017, 51, 477–504. [Google Scholar] [CrossRef]
- Singh, S.K.; Singh, I.V.; Mishra, B.K.; Bhardwaj, G.; Sing, S.K. Analysis of cracked plate using higher-order shear deformation theory: Asymptotic crack-tip fields and XIGA implementation. Comput. Methods Appl. Mech. Eng. 2018, 336, 594–639. [Google Scholar] [CrossRef]
- Natarajan, S.; Baiz, P.M.; Bordas, S.; Rabczuk, T.; Kerfriden, P. Natural frequencies of cracked functionally graded material plates by the extended finite element method. Compos. Struct. 2011, 93, 3082–3092. [Google Scholar] [CrossRef] [Green Version]
- Nguyen-Thoi, T.; Rabczuk, T.; Ho-Huu, V.; Le-Anh, L.; Dang-Trungm, H.; Vo-Duy, T. An extended cell-based smoothed three-node Mindlin plate element (XCS-MIN3) for free vibration analysis of cracked FGM plates. Int. J. Comput. Methods 2017, 14, 1750011. [Google Scholar] [CrossRef]
- Fantuzzi, N.; Tornabene, F.; Viola, E. Four-parameter functionally graded cracked plates of arbitrary shape: A GDQFEM solution for free vibrations. Mech. Adv. Mater. Struct. 2015, 23, 89–107. [Google Scholar] [CrossRef]
- Yin, S.; Yu, T.; Bui, T.Q.; Liu, P.; Hirose, S. Buckling and vibration extended isogeometric analysis of imperfect graded Reissner-Mindlin plates with internal defects using NURBS and level sets. Comput. Struct. 2016, 177, 23–38. [Google Scholar] [CrossRef]
- Zhang, J.K.; Yu, T.T.; Bui, T.Q. An adaptive XIGA with local refined NURBS for modeling cracked composite FGM Mindlin-Reossner plates. Eng. Comput. 2021. [Google Scholar] [CrossRef]
- Khalafia, V.; Fazilati, J. Free vibration analysis of functionally graded plates containing embedded curved cracks. Struct. Eng. Mech. 2021, 79, 157–168. [Google Scholar]
- Huang, C.S.; McGee, O.G.; Chang, M.J. Vibrations of cracked rectangular FGM thick plates. Compos. Struct. 2011, 93, 1747–1764. [Google Scholar] [CrossRef]
- Tran, L.V.; Ly, H.A.; Wahab, M.A.; Nguyen-Xuan, H. Vibration analysis of cracked FGM plates using higher-order shear deformation theory and extended isogeometric approach. Int. J. Mech. Sci. 2015, 96–97, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.S.; Yang, P.J.; Chang, M.J. Three-dimensional vibrations of functionally graded material cracked rectangular plates with through internal cracks. Compos. Struct. 2012, 94, 2764–2776. [Google Scholar] [CrossRef]
- Huang, C.S.; McGee, O.G.; Wang, K.P. Three-dimensional vibrations of cracked rectangular parallelepipeds of functionally graded material. Int. J. Mech. Sci. 2013, 70, 1–25. [Google Scholar] [CrossRef]
- Petyt, M. The vibration characteristics of a tensioned plate containing a fatigue crack. J. Sound Vib. 1968, 8, 377–389. [Google Scholar] [CrossRef]
- Vafai, A.; Javidruzi, M.; Estekanchi, H.E. Parametric instability of edge cracked plates. Thin-Walled Struct. 2002, 40, 29–44. [Google Scholar] [CrossRef]
- Zeng, H.C.; Huang, C.S.; Leissa, A.W.; Chang, M.J. Vibrations and stability of a loaded side-cracked rectangular plate via the MLS-Ritz method. Thin-Walled Struct. 2016, 106, 459–470. [Google Scholar] [CrossRef]
- Huang, C.S.; Lee, M.C.; Chang, M.J. Applications of the MLS-Ritz approach to vibrations and buckling of internally cracked square plates. Int. J. Struct. Stab. Dyn. 2018, 18, 1850105. [Google Scholar] [CrossRef]
- Natarajan, S.; Baiz, P.M.; Ganapathi, M.; Kerfriden, P.; Bordas, S. Linear free flexural vibration of cracked functionally graded plates in thermal environment. Comput. Struct. 2011, 89, 1535–1546. [Google Scholar] [CrossRef] [Green Version]
- Rahimabadi, A.A.; Natarajan, S.; Bordas, S.P.A. Vibration of functionally graded material plates with cutouts & cracks in thermal environment. Key Eng. Mater. 2013, 560, 157–180. [Google Scholar]
- Liu, G.R. Meshless Free Methods: Moving beyond the Finite Element Method; CRC Press: New York, NY, USA, 2003. [Google Scholar]
- Suresh, S.; Mortensen, A. Fundamentals of Functionally Graded Materials; IOM Communications: London, UK, 1998. [Google Scholar]
- Bao, G.; Wang, L. Multiple cracking in functionally graded ceramic/metal coatings. Int. J. Solids Struct. 1995, 32, 2853–2871. [Google Scholar] [CrossRef]
- Matsunaga, H. Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory. Compos. Struct. 2008, 82, 499–512. [Google Scholar] [CrossRef]
- Belytschko, T.; Lu, Y.Y.; Gu, L. Element-free Galerkin methods. Int. J. Numer. Methods Eng. 1994, 37, 229–256. [Google Scholar] [CrossRef]
- Hartranft, R.J.; Sih, G.C. The use of eigenfunction expansions in the general solution of three-dimensional crack problems. J. Math. Mech. 1969, 19, 123–138. [Google Scholar] [CrossRef]
- Cho, J.Y.; Song, Y.M.; Choi, Y.H. Boundary locking induced by penalty enforcement of essential boundary conditions in mesh-free methods. Comput. Methods Appl. Mech. Eng. 2008, 131, 1167–1183. [Google Scholar] [CrossRef]
- Wang, K.P. Three-Dimensional Vibrations of Functionally Graded Material Rectangular Plates with Side Cracks. Master’s Thesis, National Chiao Tung University, Hsinchu, Taiwan, 2010. [Google Scholar]
Mode | Nz | Wang [69] | |||||
---|---|---|---|---|---|---|---|
25 × 25 | 40 × 20 | 30 × 30 | 50 × 25 | ||||
0 | 1 | 2 | 0.2271 | 0.2269 | 0.2270 | 0.2269 | 0.227 |
3 | 0.2268 | 0.2267 | 0.2268 | 0.2266 | |||
4 | 0.2268 | 0.2267 | 0.2268 | 0.2266 | |||
2 | 2 | 0.8422 | 0.8415 | 0.8421 | 0.8410 | 0.838 | |
3 | 0.8396 | 0.8389 | 0.8395 | 0.8384 | |||
4 | 0.8396 | 0.8388 | 0.8395 | 0.8384 | |||
3 | 2 | 1.263 | 1.261 | 1.262 | 1.260 | 1.255 | |
3 | 1.259 | 1.258 | 1.259 | 1.257 | |||
4 | 1.259 | 1.257 | 1.259 | 1.256 | |||
4 | 2 | 1.532 * | 1.531 * | 1.532 * | 1.531 * | 1.530 | |
3 | 1.532 * | 1.531 * | 1.532 * | 1.530 * | |||
4 | 1.532 * | 1.531 * | 1.532 * | 1.530 * | |||
5 | 2 | 2.745 | 2.742 | 2.743 | 2.741 | 2.726 | |
3 | 2.731 | 2.728 | 2.729 | 2.727 | |||
4 | 2.731 | 2.728 | 2.729 | 2.727 | |||
0.3 | 1 | 2 | 0.1838 | 0.1836 | 0.1837 | 0.1835 | / |
3 | 0.1834 | 0.1833 | 0.1834 | 0.1832 | |||
4 | 0.1834 | 0.1833 | 0.1834 | 0.1831 | |||
2 | 2 | 0.8400 | 0.8392 | 0.8399 | 0.8388 | / | |
3 | 0.8374 | 0.8366 | 0.8373 | 0.8362 | |||
4 | 0.8373 | 0.8366 | 0.8373 | 0.8362 | |||
3 | 2 | 1.222 | 1.220 | 1.222 | 1.219 | / | |
3 | 1.218 | 1.217 | 1.218 | 1.216 | |||
4 | 1.218 | 1.217 | 1.218 | 1.215 | |||
4 | 2 | 1.525 * | 1.524 * | 1.525 * | 1.524 * | / | |
3 | 1.525 * | 1.524 * | 1.525 * | 1.524 * | |||
4 | 1.525 * | 1.524 * | 1.525 * | 1.524 * | |||
5 | 2 | 2.734 | 2.731 | 2.732 | 2.729 | / | |
3 | 2.720 | 2.717 | 2.718 | 2.716 | |||
4 | 2.720 | 2.717 | 2.718 | 2.715 |
Mode | Nz | Different Approaches | ||||||
---|---|---|---|---|---|---|---|---|
15 | 20 | 25 | 30 | |||||
5 | 0 | 1 | 2 | 0.6463 | 0.6456 | 0.6451 | 0.6450 | (0.6423) |
3 | 0.6437 | 0.6430 | 0.6425 | 0.6425 | ||||
4 | 0.6436 | 0.6429 | 0.6424 | 0.6423 | ||||
2 | 2 | 1.582 | 1.579 | 1.579 | 1.578 | (1.561) | ||
3 | 1.565 | 1.562 | 1.562 | 1.561 | ||||
4 | 1.564 | 1.562 | 1.561 | 1.561 | ||||
3 | 2 | 3.427 | 3.418 | 3.410 | 3.409 | (3.365) | ||
3 | 3.386 | 3.377 | 3.371 | 3.370 | ||||
4 | 3.385 | 3.376 | 3.369 | 3.368 | ||||
4 | 2 | 3.965 * | 3.962 * | 3.961 * | 3.961 * | (3.960) | ||
3 | 3.964 * | 3.961 * | 3.960 * | 3.959 * | ||||
4 | 3.964 * | 3.961 * | 3.959 * | 3.959 * | ||||
5 | 2 | 4.856 | 4.853 | 4.851 | 4.851 | (4.808) | ||
3 | 4.815 | 4.813 | 4.811 | 4.811 | ||||
4 | 4.814 | 4.812 | 4.810 | 4.809 | ||||
0 | 0.1 | 1 | 2 | 0.9257 | 0.9246 | 0.9236 | 0.9235 | [0.9210] |
3 | 0.9232 | 0.9221 | 0.9212 | 0.9210 | ||||
4 | 0.9231 | 0.9220 | 0.9211 | 0.9209 | ||||
2 | 2 | 2.400 | 2.395 | 2.394 | 2.393 | [2.378] | ||
3 | 2.384 | 2.380 | 2.378 | 2.378 | ||||
4 | 2.384 | 2.379 | 2.378 | 2.378 | ||||
3 | 2 | 5.192 | 5.176 | 5.164 | 5.162 | [5.129] | ||
3 | 5.155 | 5.140 | 5.129 | 5.127 | ||||
4 | 5.154 | 5.139 | 5.128 | 5.126 | ||||
4 | 2 | 6.095 * | 6.091 * | 6.089 * | 6.089 * | [6.081] | ||
3 | 6.095 * | 6.091 * | 6.088 * | 6.088 * | ||||
4 | 6.094 * | 6.090 * | 6.087 * | 6.087 * | ||||
5 | 2 | 7.436 | 7.433 | 7.429 | 7.429 | [7.392] | ||
3 | 7.401 | 7.397 | 7.394 | 7.394 | ||||
4 | 7.401 | 7.397 | 7.394 | 7.393 |
h/b | B.C. | a/b | |||
---|---|---|---|---|---|
0.1 | CFFF | 1 | 0° | 0 | 0.2377 |
0.2 | 1.059 | ||||
2 | 0.2 | 0.2610 | |||
SSSS | 1 | 0 | 3.376 | ||
0.2 | 15.09 | ||||
10 | 5.349 | ||||
2 | 0.2 | 15.42 | |||
0.2 | CFFF | 1 | 0° | 0 | 0.2308 |
0.2 | 1.029 | ||||
15° | 0.2 | 1.029 | |||
30° | 1.021 | ||||
45° | 0.9892 |
B.C. | Mode | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||
CFFF | 0.3 | All | 0.6288 | 1.598 | 3.643 * | 4.022 | 5.566 |
0.6288 | 1.598 | 3.643 * | 4.022 | 5.566 | |||
0.6364 | 1.585 | 3.646* | 4.000 | 5.547 | |||
SSSS | All | 2.280 | 5.560 * | 8.054 | 11.16 | 14.72 | |
2.222 | 5.540 * | 7.957 | 11.12 | 14.68 | |||
3.499 | 5.671 * | 8.554 | 11.82 | 14.63 |
B.C. | Mode | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||
CFFF | 0.4 | All | 0.657 | 2.157 | 4.596 | 5.784 * | 6.866 |
0.657 | 2.158 | 4.597 | 5.785 * | 6.866 | |||
0.660 | 2.158 | 4.601 | 5.785 * | 6.867 | |||
SSSS | All | 3.747 | 8.934 | 12.13 | 16.47 * | 17.09 | |
3.769 | 8.930 | 12.15 | 16.46 * | 17.08 | |||
3.318 | 8.921 | 11.89 | 16.52 * | 17.07 |
Mode | |||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||
0 | 0 | −0.5 | 6.798 | 14.06 | 15.58 | 21.94 | 24.53 * |
0 | 5.552 | 13.49 | 13.49 | 20.50 | 24.33 * | ||
0.3 | 4.645 | 12.06 | 13.13 | 19.59 | 23.92 | ||
0.3 | −0.5 | 7.044 | 12.05 * | 14.19 | 15.64 | 21.52 | |
0 | 5.474 | 11.01 * | 12.98 | 13.44 | 19.75 | ||
0.3 | 4.208 | 10.26 * | 11.10 | 12.82 | 18.50 | ||
0.2 | 0 | −0.5 | 6.328 | 13.10 | 14.52 | 20.48 | 23.36 * |
0 | 5.167 | 12.57 | 12.57 | 19.14 | 23.18 * | ||
0.3 | 4.322 | 11.24 | 12.24 | 18.29 | 22.36 | ||
0.1 | −0.5 | 6.344 | 13.13 * | 14.54 | 20.51 | 22.87 | |
0 | 5.161 | 12.55 * | 12.57 | 19.11 | 22.33 | ||
0.3 | 4.297 | 11.21 * | 12.21 | 18.22 | 21.91 | ||
0.3 | −0.5 | 6.556 | 11.45 * | 13.23 | 14.57 | 20.10 | |
0 | 5.096 | 10.49 * | 12.10 | 12.53 | 18.46 | ||
0.3 | 3.919 | 9.813 * | 10.36 | 11.95 | 17.30 | ||
0.5 | −0.5 | 6.309 * | 6.767 | 12.58 | 14.01 | 17.04 * | |
0 | 4.843 | 5.436 * | 10.89 | 11.97 | 15.31 | ||
0.3 | 2.438 | 4.685 * | 7.938 | 11.23 | 12.46 | ||
10 | 0.3 | −0.5 | 4.416 | 7.204 * | 8.823 | 9.735 | 13.26 |
0 | 3.430 | 6.516 * | 8.050 | 8.344 | 12.13 | ||
0.3 | 2.630 | 6.005 * | 6.844 | 7.948 | 11.31 |
a/b | d/b | Mode | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||||||
1 | 0 | 0.25 | 0.3 | 90° | −0.5 | 1.152 | 2.142 | 4.816 * | 5.405 | 7.620 |
0 | 0.9240 | 2.096 | 4.777 * | 5.216 | 7.512 | |||||
0.3 | 0.7423 | 2.067 | 4.753 * | 5.093 | 7.435 | |||||
0.2 | 0 | −0.5 | 1.163 | 2.337 | 5.907 | 6.308 * | 7.223 | |||
0 | 0.9667 | 2.273 | 5.676 | 6.286 * | 7.190 | |||||
0.3 | 0.8186 | 2.234 | 5.530 | 6.272 * | 7.172 | |||||
0.1 | 90° | −0.5 | 1.149 | 2.298 | 5.845 | 6.023 * | 7.198 | |||
0 | 0.9497 | 2.237 | 5.620 | 5.999 * | 7.164 | |||||
0.3 | 0.7984 | 2.200 | 5.477 | 5.984 * | 7.145 | |||||
0.3 | 90° | −0.5 | 1.071 | 1.993 | 4.587 * | 5.033 | 7.089 | |||
0 | 0.8585 | 1.950 | 4.551 * | 4.858 | 6.989 | |||||
0.1 | 0.8071 | 1.941 | 4.544 * | 4.821 | 6.967 | |||||
0.3 | 0.6899 | 1.924 | 4.530 * | 4.744 | 6.919 | |||||
135° | −0.5 | 1.136 | 2.135 | 5.034 | 5.727 * | 6.969 | ||||
0 | 0.9301 | 2.085 | 4.851 | 5.699 * | 6.914 | |||||
0.3 | 0.7703 | 2.054 | 4.732 | 5.681 * | 6.878 | |||||
0.5 | 90° | −0.5 | 0.9337 | 1.560 | 2.962 * | 4.027 | 6.926 | |||
0 | 0.7164 | 1.523 | 2.909 * | 3.876 | 6.900 | |||||
0.3 | 0.5192 | 1.502 | 2.877 * | 3.777 | 6.802 | |||||
2 | 0.2 | 0.25 | 0.3 | 90° | −0.5 | 0.2773 | 0.9274 | 1.513 | 1.609 * | 3.077 |
0 | 0.2256 | 0.9217 | 1.453 | 1.602 * | 3.056 | |||||
0.3 | 0.1855 | 0.9181 | 1.416 | 1.597 * | 3.044 | |||||
135° | −0.5 | 0.2847 | 0.9612 | 1.508 | 1.882 * | 3.130 | ||||
0 | 0.2342 | 0.9546 | 1.448 | 1.876 * | 3.108 | |||||
0.3 | 0.1955 | 0.9506 | 1.411 | 1.872 * | 3.095 | |||||
0.5 | 0.3 | 90° | −0.5 | 0.2868 | 0.9478 | 1.447 | 1.899 * | 3.098 | ||
0 | 0.2359 | 0.9419 | 1.384 | 1.892 * | 3.079 | |||||
0.3 | 0.1966 | 0.9384 | 1.345 | 1.888 * | 3.068 |
d/b | Mode | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||||
0° | 0 | 0.3 | 90° | −0.5 | 1.203 | 2.274 | 3.268 * | 5.289 | 6.710 |
0 | 0.9890 | 2.194 | 3.218 * | 5.009 | 6.686 | ||||
0.4 | 0.7545 | 2.127 | 3.177 * | 4.771 | 6.668 | ||||
0.2 | 0 | −0.5 | 1.133 | 2.147 | 3.192 * | 5.241 | 6.405 | ||
0 | 0.9442 | 2.083 | 3.149 * | 5.010 | 6.372 | ||||
0.4 | 0.7451 | 2.029 | 3.114 * | 4.813 | 6.348 | ||||
0.1 | −0.5 | 1.131 | 2.143 | 3.184 * | 5.203 | 6.381 | |||
0 | 0.9412 | 2.077 | 3.140 * | 4.967 | 6.351 | ||||
0.4 | 0.7397 | 2.022 | 3.105 * | 4.766 | 6.328 | ||||
0.3 | −0.5 | 1.119 | 2.122 | 3.112 * | 4.943 | 6.260 | |||
0 | 0.9198 | 2.048 | 3.066 * | 4.683 | 6.239 | ||||
0.4 | 0.7017 | 1.986 | 3.029 * | 4.463 | 6.222 | ||||
0° | 0.2 | 0.3 | 45° | −0.5 | 1.126 | 2.106 | 3.110 * | 5.122 | 6.083 |
0 | 0.9323 | 2.035 | 3.064 * | 4.874 | 6.056 | ||||
0.4 | 0.7247 | 1.976 | 3.027 * | 4.664 | 6.034 | ||||
0.5 | 90° | −0.5 | 1.094 | 2.103 | 2.960 * | 4.510 | 5.901 * | ||
0 | 0.8772 | 2.013 | 2.910 * | 4.234 | 5.873 * | ||||
0.4 | 0.6236 | 1.937 | 2.868 * | 3.996 | 5.849 * | ||||
15° | 0.3 | −0.5 | 1.150 | 2.151 | 3.126 * | 5.109 | 6.123 | ||
0 | 0.9452 | 2.090 | 3.077 * | 4.827 | 6.085 | ||||
0.4 | 0.7211 | 2.039 | 3.037 * | 4.585 | 6.052 | ||||
30° | −0.5 | 1.241 | 2.271 | 3.149 * | 5.619 | 6.038 | |||
0 | 1.021 | 2.249 | 3.087 * | 5.249 | 6.045 | ||||
0.4 | 0.7803 | 2.227 | 3.037 * | 4.916 | 6.061 | ||||
45° | −0.5 | 1.259 | 2.271 | 3.147 * | 5.821 | 5.937 | |||
0 | 1.049 | 2.251 | 3.086 * | 5.499 | 5.921 | ||||
0.4 | 0.8253 | 2.231 | 3.036 * | 5.171 | 5.955 | ||||
45° | 90° | −0.5 | 1.372 | 2.607 | 3.090 * | 6.177 | 6.541 | ||
0 | 1.142 | 2.644 | 3.004 * | 5.756 | 6.539 | ||||
0.4 | 0.8786 | 2.669 | 2.933 * | 5.272 | 6.613 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.-S.; Lee, H.-T.; Li, P.-Y.; Chang, M.-J. Three-Dimensional Free Vibration Analyses of Preloaded Cracked Plates of Functionally Graded Materials via the MLS-Ritz Method. Materials 2021, 14, 7712. https://doi.org/10.3390/ma14247712
Huang C-S, Lee H-T, Li P-Y, Chang M-J. Three-Dimensional Free Vibration Analyses of Preloaded Cracked Plates of Functionally Graded Materials via the MLS-Ritz Method. Materials. 2021; 14(24):7712. https://doi.org/10.3390/ma14247712
Chicago/Turabian StyleHuang, Chiung-Shiann, Hao-Ting Lee, Pin-Yu Li, and Ming-Ju Chang. 2021. "Three-Dimensional Free Vibration Analyses of Preloaded Cracked Plates of Functionally Graded Materials via the MLS-Ritz Method" Materials 14, no. 24: 7712. https://doi.org/10.3390/ma14247712
APA StyleHuang, C. -S., Lee, H. -T., Li, P. -Y., & Chang, M. -J. (2021). Three-Dimensional Free Vibration Analyses of Preloaded Cracked Plates of Functionally Graded Materials via the MLS-Ritz Method. Materials, 14(24), 7712. https://doi.org/10.3390/ma14247712