Simultaneously Enhanced Potential Gradient and Nonlinearity of ZnO Varistor Ceramics by MnO Doping with Nano-Sized ZnO Powders
Abstract
:1. Introduction
2. Experiments
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, T.K. Application of Zinc Oxide varistors. J. Am. Ceram. Soc. 1990, 73, 1817–1840. [Google Scholar] [CrossRef]
- Shaifudin, M.S.; Ghazali, M.S.M. Synergistic Effects of Pr6O11 and Co3O4 on Electrical and Microstructure Features of ZnO-BaTiO3 Varistor Ceramics Muhamad. Materials 2021, 14, 702. [Google Scholar] [CrossRef]
- Meng, P.; Zhao, X.; Fu, Z.; Wu, J.; Hu, J.; He, J. Novel zinc-oxide varistor with superior performance in voltage gradient and aging stability for surge arrester. J. Alloys Compd. 2019, 789, 948–952. [Google Scholar] [CrossRef]
- Meng, P.; Wu, J.; Yang, X.; Hu, J.; He, J. Electrical properties of ZnO varistor ceramics modified by rare earth-yttrium and gallium dopants. Mater. Lett. 2018, 233, 20–23. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, L.; Kong, F.; Wu, K.; Li, S.; Li, J. Enhanced voltage gradient and energy absorption capability in ZnO varistor ceramics by using nano-sized ZnO powders. J. Alloys Compd. 2020, 828, 154252. [Google Scholar] [CrossRef]
- Xu, D.; Wu, J.; Jiao, L.; Xu, H.; Zhang, P.; Yu, R.; Cheng, X. Highly nonlinear property and threshold voltage of Sc2O3 doped ZnO-Bi2O3-based varistor ceramics. J. Rare Earths 2013, 31, 158–163. [Google Scholar] [CrossRef]
- Guo, M.; Zhao, X.; Shi, W.; Zhang, B.; Wu, K.; Li, J. Simultaneously improving the electrical properties and long-term stability of ZnO varistor ceramics by reversely manipulating intrinsic point defects. J. Eur. Ceram. Soc. 2021, 42, 162–168. [Google Scholar] [CrossRef]
- Nahm, C.W. Er2O3 doping effect on electrical properties of ZnO-V2O5-MnO2-Nb2O5 varistor ceramics. J. Am. Ceram. Soc. 2011, 94, 3227–3229. [Google Scholar] [CrossRef]
- Nahm, C.W. Effect of Yb2O3 addition on varistor properties and aging characteristics of ZnO-V2O5-Mn3O4 system. J. Mater. Sci. Mater. Electron. 2018, 29, 2958–2965. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, W.; Gao, J.; Kong, F.; Li, Y.; Li, S. Effects of the Er2O3 doping on the microstructure and electrical properties of ZnO–Bi2O3 based varistor ceramics. Ceram. Int. 2021, 47, 32349–32356. [Google Scholar] [CrossRef]
- Xu, D.; Shi, L.; Wu, Z.; Zhong, Q.; Wu, X. Microstructure and electrical properties of ZnO-Bi2O3-based varistor ceramics by different sintering processes. J. Eur. Ceram. Soc. 2009, 29, 1789–1794. [Google Scholar] [CrossRef]
- Mazaheri, M.; Hassanzadeh-Tabrizi, S.A.; Sadrnezhaad, S.K. Hot pressing of nanocrystalline zinc oxide compacts: Densification and grain growth during sintering. Ceram. Int. 2009, 35, 991–995. [Google Scholar] [CrossRef]
- Savary, E.; Marinel, S.; Gascoin, F.; Kinemuchi, Y.; Pansiot, J.; Retoux, R. Peculiar effects of microwave sintering on ZnO based varistors properties. J. Alloys Compd. 2011, 509, 6163–6169. [Google Scholar] [CrossRef]
- Hembram, K.; Rao, T.N.; Srinivasa, R.S.; Kulkarni, A.R. High performance varistors prepared from doped ZnO nanopowders made by pilot-scale flame spray pyrolyzer: Sintering, microstructure and properties. J. Eur. Ceram. Soc. 2015, 35, 3535–3544. [Google Scholar] [CrossRef]
- Meng, L.; Zheng, L.; Cheng, L.; Li, G.; Huang, L.; Zhang, F. Synthesis of novel core-shell nanocomposites for fabricating high breakdown voltage ZnO varistors. J. Mater. Chem. 2011, 21, 11418–11423. [Google Scholar] [CrossRef]
- Boumezoued, A.; Guergouri, K. Synthesis and characterization of ZnO-based nano-powders: Study of the effect of sintering temperature on the performance of ZnO-Bi2O3 varistors. J. Mater. Sci. Mater. Electron. 2021, 32, 3125–3139. [Google Scholar] [CrossRef]
- Li, Y.; Li, G.; Yin, Q. Preparation of ZnO varistors by solution nano-coating technique. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2006, 130, 264–268. [Google Scholar] [CrossRef]
- Cheng, L.H.; Zheng, L.Y.; Meng, L.; Li, G.R.; Gu, Y.; Zhang, F.P.; Chu, R.Q.; Xu, Z.J. Electrical properties of Al2O3-doped ZnO varistors prepared by sol-gel process for device miniaturization. Ceram. Int. 2012, 38, S457–S461. [Google Scholar] [CrossRef]
- Gao, L.; Li, Q.; Luan, W. Preparation and Electric Properties of Dense Nanocrystalline Zinc Oxide Ceramics. J. Am. Ceram. Soc. 2002, 18, 2001–2003. [Google Scholar] [CrossRef]
- Abrishami, M.E.; Kompany, A. Varistor behavior of Mn doped ZnO ceramics prepared from nanosized precursors. J. Electroceramics 2012, 29, 125–132. [Google Scholar] [CrossRef]
- Maleki, M.; Ali, S.; Ali, M.; Sani, F.; Nemati, A.; Safaee, I. Two-step sintering of ZnO varistors. Solid State Ionics 2011, 190, 99–105. [Google Scholar] [CrossRef]
- Durán, P.; Tartaj, J.; Moure, C. Fully dense, fine-grained, doped zinc oxide varistors with improved nonlinear properties by thermal processing optimization. J. Am. Ceram. Soc. 2003, 86, 1326–1329. [Google Scholar] [CrossRef]
- Viswanath, R.N.; Ramasamy, S.; Ramamoorthy, R.; Jayavel, P.; Nagarajan, T. Preparation and characterization of nanocrystalline ZnO based materials for varistor applications. Nanostructured Mater. 1995, 6, 993–996. [Google Scholar] [CrossRef]
- Anas, S.; Metz, R.; Sanoj, M.A.; Mangalaraja, R.V.; Ananthakumar, S. Sintering of surfactant modified ZnO-Bi2O3 based varistor nanopowders. Ceram. Int. 2010, 36, 2351–2358. [Google Scholar] [CrossRef]
- Boumezoued, A.; Guergouri, K.; Barille, R.; Rechem, D.; Zaabat, M.; Rasheed, M. ZnO nanopowders doped with bismuth oxide, from synthesis to electrical application. J. Alloys Compd. 2019, 791, 550–558. [Google Scholar] [CrossRef]
- Mirzayi, M. The effect of TiO2 concentration on the electrical and microstructural properties of ZnO-base varistor ceramic prepared from nanosize ZnO particles. Adv. Appl. Ceram. 2020, 119, 373–379. [Google Scholar] [CrossRef]
- Macary, L.S.; Kahn, M.L.; Estournès, C.; Fau, P.; Flash, D.F.; Trémouilles, D.; Bafleur, M.; Renaud, P.; Chaudret, B. Size effect on properties of varistors made from zinc oxide nanoparticles through low temperature spark plasma sintering. Adv. Funct. Mater. 2009, 19, 1775–1783. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Li, G.; Yuan, K.; Meng, L.; Zheng, L. Improvement in nonlinear properties and electrical stability of ZnO varistors with B2O3 additives by nano-coating method. J. Am. Ceram. Soc. 2012, 95, 1004–1010. [Google Scholar] [CrossRef]
- Rohini, R.; Pugazhendhi Sugumaran, C. Enhancement of Electro-Thermal Characteristics of Micro/Nano ZnO Based Surge Arrester. J. Electr. Eng. Technol. 2021, 16, 469–481. [Google Scholar] [CrossRef]
- Hong, Y.W.; Kim, J.H. The electrical properties of Mn3O4-doped ZnO. Ceram. Int. 2004, 30, 1301–1306. [Google Scholar] [CrossRef]
- Han, J.; Senos, A.M.R.; Mantas, P.Q. Varistor behaviour of Mn-doped ZnO ceramics. J. Eur. Ceram. Soc. 2002, 22, 1653–1660. [Google Scholar] [CrossRef]
- Toplan, Ö.; Günay, V.; Özkan, O.T. Grain growth in the MnO added ZnO-6 wt% Sb2O3 ceramic system. Ceram. Int. 1997, 23, 251–255. [Google Scholar] [CrossRef]
- Ohashi, N.; Terada, Y.; Ohgaki, T.; Tanaka, S.; Tsurumi, T.; Fukunaga, O.; Haneda, H.; Tanaka, J. Synthesis of ZnO bicrystals doped with Co or Mn and their electrical properties. Jpn. J. Appl. Phys. 1999, 38, 5028–5032. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, K.; Tang, Z.; Xin, L.; Zhang, L.; Li, J. Investigation of electrical inhomogeneity in ZnO varistor ceramics based on electronic relaxations. Ceram. Int. 2019, 45, 1110–1114. [Google Scholar] [CrossRef]
- Guo, M.; Wu, K.; Zhang, L.; Ying, L. Revisiting the effects of Co2O3 on multiscale defect structures and relevant electrical properties in ZnO varistors. High Volt. 2020, 5, 241–248. [Google Scholar] [CrossRef]
- Wu, K.; Huang, Y.; Hou, L.; Tang, Z.; Li, J.; Li, S. Effects of dc bias on dielectric relaxations in CaCu3Ti4O12 ceramics. J. Mater. Sci. Mater. Electron. 2018, 29, 4488–4494. [Google Scholar] [CrossRef]
- Wang, X.; Ren, X.; Li, Z.; You, W.; Jiang, H.; Yu, W.; Jin, L.; Yao, Z.; Shi, L. A unique tuning effect of Mg on grain boundaries and grains of ZnO varistor ceramics. J. Eur. Ceram. Soc. 2021, 41, 2633–2640. [Google Scholar] [CrossRef]
- Han, J.; Mantas, P.Q.; Senos, A.M.R. Defect chemistry and electrical characteristics of undoped and Mn-doped ZnO. J. Eur. Ceram. Soc. 2002, 22, 49–59. [Google Scholar] [CrossRef]
- Wu, K.; Wang, Y.; Hou, Z.; Li, S.; Li, J.; Tang, Z.; Lin, Y. Colossal permittivity due to electron trapping behaviors at the edge of double Schottky barrier. J. Phys. D Appl. Phys. 2021, 54, 045301. [Google Scholar] [CrossRef]
Samples | d (µm) | ε | ρ | E1mA (V/mm) | α | JL (μA/cm2) | ϕB (eV) | ND (1022 m−3) | Ns (1016 cm−2) | t (nm) |
---|---|---|---|---|---|---|---|---|---|---|
M1 | 2.80 | 0.314 | 97.1% | 1163 | 15.25 | 40.1 | 1.42 | 7.87 | 6.28 | 399 |
M2 | 2.77 | 0.308 | 97.3% | 1151 | 15.28 | 30.7 | 1.43 | 8.41 | 6.54 | 388 |
M3 | 2.66 | 0.316 | 97.6% | 1172 | 47.86 | 8.4 | 1.69 | 12.59 | 8.68 | 345 |
M4 | 2.69 | 0.350 | 97.4% | 1179 | 35.14 | 22.4 | 1.53 | 6.72 | 6.03 | 449 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Hou, Z.; Li, J.; Wu, K.; Song, J.; Chen, R.; Li, K.; Hao, L.; Xu, C. Simultaneously Enhanced Potential Gradient and Nonlinearity of ZnO Varistor Ceramics by MnO Doping with Nano-Sized ZnO Powders. Materials 2021, 14, 7748. https://doi.org/10.3390/ma14247748
Wang Y, Hou Z, Li J, Wu K, Song J, Chen R, Li K, Hao L, Xu C. Simultaneously Enhanced Potential Gradient and Nonlinearity of ZnO Varistor Ceramics by MnO Doping with Nano-Sized ZnO Powders. Materials. 2021; 14(24):7748. https://doi.org/10.3390/ma14247748
Chicago/Turabian StyleWang, Yao, Zongke Hou, Jianying Li, Kangning Wu, Jiguang Song, Rui Chen, Kai Li, Liucheng Hao, and Chenbo Xu. 2021. "Simultaneously Enhanced Potential Gradient and Nonlinearity of ZnO Varistor Ceramics by MnO Doping with Nano-Sized ZnO Powders" Materials 14, no. 24: 7748. https://doi.org/10.3390/ma14247748
APA StyleWang, Y., Hou, Z., Li, J., Wu, K., Song, J., Chen, R., Li, K., Hao, L., & Xu, C. (2021). Simultaneously Enhanced Potential Gradient and Nonlinearity of ZnO Varistor Ceramics by MnO Doping with Nano-Sized ZnO Powders. Materials, 14(24), 7748. https://doi.org/10.3390/ma14247748