Transverse Vibration of Viscoelastic Sandwich Structures: Finite Element Modeling and Experimental Study
Abstract
:1. Introduction
2. FE Model for an EVES Beam
2.1. Fundamental Assumptions
- The structural damping is only caused by the transverse compression/tensile deformation of the viscoelastic sandwich layer;
- The constraint layer and the base beam are regarded as Euler-Bernoulli beams;
- Considering the compression deformation of the viscoelastic layer perpendicular to the neutral plane of the beam, it is considered that the base beam layer, the damping layer, and the constraint layer have different deflection functions, and the transverse displacement of the viscoelastic layer is the linear interpolation of the two surface layers;
- The materials of each layer are firmly pasted, and there is no relative sliding between the layers;
- The influence of the moment of inertia of each layer is ignored.
2.2. Kinematics
2.3. Degrees of Freedom and Shape Functions
2.4. Energy Terms
2.4.1. The Strain Energy
2.4.2. The Kinetic Energy
2.5. Equation of Motion
3. Experiment
4. Numerical and Analytical Investigations
5. Conclusions
- The transverse compressional vibration is a broadband existence in EVES beams;
- The FE compressional model presented inthis paper is in suitable agreement with the analytical model. It is a relatively accurate and simple method for predicting the natural frequencies of EVES beams. However, it is quite poor for damping predictions because it ignores shear damping;
- The geometry and the vibration mode determine the damping mechanisms. The shear model and the compressional model have different applicable conditions, which are related to the thickness of each layer and the vibration mode of the structure. In general, the shear energy dissipation assumption is applicable to EVES thin-walled beams, and the compression energy dissipation assumption is applicable to EVES beams with relatively thick constraining layer and base beams;
- When the base beam and the constrained layer are relatively thick, and the viscoelastic layer is relatively thin, neither the current shear model nor the compression model can accurately predict the damping. A model including shear damping and compressional damping should greatly improve the accuracy of damping prediction, which needs further research.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, Q.J.; Rejab, R.; Siregar, J.P.; Guan, Z.W. A review of the recent trends on core structures and impact response of sandwich panels. J. Compos. Mater. 2021, 55, 2513–2555. [Google Scholar] [CrossRef]
- Bethke, C.; Weber, L.; Goedderz, D.; Standau, T.; Altstädt, V. Fire behavior of flame retarded sandwich structures containing PET foam cores and epoxy face sheets. Polym. Compos. 2020, 41, 5195–5208. [Google Scholar] [CrossRef]
- Burlayenko, V.N.; Sadowski, T. Simulations of Post-impact Skin/core Debond Growth in Sandwich Plates Under Impulsive Loading. J. Appl. Nonlinear Dyn. 2014, 3, 369–379. [Google Scholar] [CrossRef]
- Funari, M.F.; Spadea, S.; Lonetti, P.; Loureno, P.B. On the elastic and mixed-mode fracture properties of PVC foam. Theor. Appl. Fract. Mech. 2021, 112, 102924. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, Z.; Chu, F. Nonlinear forced vibrations of FGM sandwich cylindrical shells with porosities on an elastic substrate. Nonlinear Dynam. 2021, 104, 1007–1021. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, Z.; Chu, F. Nonlinear dynamic responses of sandwich functionally graded porous cylindrical shells embedded in elastic media under 1:1 internal resonance. Appl. Math. Mech. 2021, 42, 805–818. [Google Scholar] [CrossRef]
- Koutoati, K.; Mohri, F.; Daya, E.M.; Carrera, E. A finite element approach for the static and vibration analyses of functionally graded material viscoelastic sandwich beams with nonlinear material behavior. Compos. Struct. 2021, 274, 114315. [Google Scholar] [CrossRef]
- Sun, C.T.; Sankar, B.V.; Rao, V.S. Damping and vibration control of unidirectional composite laminates using add-on viscoelastic materials. J. Sound Vib. 1990, 139, 277–287. [Google Scholar] [CrossRef]
- Hamdaoui, M.; Ledi, K.S.; Robin, G.; Daya, E.M. Identification of frequency-dependent viscoelastic damped structures using an adjoint method. J. Sound Vib. 2019, 453, 237–252. [Google Scholar] [CrossRef]
- Li, W.; He, Y.; Xu, Z.; Zhang, Z. A reduced passive constrained layer damping finite element model based on the modified improved reduced system method. J.Sandw. Struct. Mater. 2019, 21, 758–783. [Google Scholar] [CrossRef]
- Kerwin, E.M.J. Damping of flexural waves by a constrained viscoelastic layer. J. Acoust. Soc. Am. 1959, 31, 952–962. [Google Scholar] [CrossRef]
- Ross, D.; Ungar, E.E.; Kerwin, E.M. Damping of plate flexural vibrations by means of viscoelastic laminae. Struct. Damping 1959, 3, 44–87. [Google Scholar]
- Ungar, E.E. Loss factors of viscoelastically damped beam structures. J. Acoust. Soc. Am. 1962, 34, 1082–1089. [Google Scholar] [CrossRef]
- Ungar, E.E.; Kerwin, E.M.J. Loss factors of viscoelastic systems in terms of energy concepts. J. Acoust. Soc. Am. 1962, 34, 954–957. [Google Scholar] [CrossRef]
- Ditarant, R.A. Theory of vibratory bending for elastic and viscoelastic layered finite length beams. Int. J. Appl. Mech. 1965, 32, 881–886. [Google Scholar] [CrossRef]
- Mead, D.J.; Markus, S. The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions. J. Sound Vib. 1969, 10, 163–175. [Google Scholar] [CrossRef]
- Mead, D.J.; Markus, S. Loss factors and resonant frequencies of encastré damped sandwich beams. J. Sound Vib. 1970, 12, 99–112. [Google Scholar] [CrossRef]
- Johnson, C.D.; Kienholz, D.A. Finite Element Prediction of Damping in Structures with Constrained Layers. AIAA J. 1982, 20, 1284–1290. [Google Scholar] [CrossRef]
- Galucio, A.C.; Deu, J.F.; Ohayon, R. Finite element formulation of viscoelastic sandwich beamsusing fractional derivative operators. Comput. Mech. 2004, 33, 282–291. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Singh, S.P. Vibration and damping characteristics of beams with active constrainedlayer treatments under parametric variations. Mater.Des. 2009, 30, 4162–4174. [Google Scholar] [CrossRef]
- Bilasse, M.; Daya, E.M.; Azrar, L. Linear and nonlinear vibrations analysis of viscoelastic sandwich beams. J. Sound Vib. 2010, 329, 4950–4969. [Google Scholar] [CrossRef]
- Kpeky, F.; Boudaoud, H.; Abed-Meraim, F.; Daya, E.M. Modeling of viscoelastic sandwich beams using solid–shell finiteelements. Compos. Struct. 2015, 133, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Hamdaoui, M.; Akoussan, K.; Daya, E.M. Comparison of non-linear eigensolvers for modal analysis of frequencydependent laminated visco-elastic sandwich plates. Finite Elem. Anal. Des. 2016, 121, 75–85. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, X.; Wu, N.; Chu, F.; Luo, J. A Finite Element Model for the Vibration Analysis of Sandwich Beam with Frequency-DependentViscoelastic Material Core. Materials 2019, 12, 3390. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Wang, X.; Wu, N.; Chu, F.; Luo, J. TheFinite Element Modeling and Experimental Study of Sandwich Plates with Frequency-DependentViscoelastic Material Model. Materials 2020, 13, 2296. [Google Scholar] [CrossRef] [PubMed]
- Karmi, Y.; Khadri, Y.; Tekili, S.; Daouadji, A.; Daya, E.M. Dynamic Analysis of Composite Sandwich Beams with a Frequency-Dependent Viscoelastic Core under the Action of a Moving Load. Mech. Compos. Mater. 2021, 56, 755–768. [Google Scholar] [CrossRef]
- Paola, M.D.; Galuppi, L.; Carfagni, G.R. Fractional viscoelastic characterization of laminated glass beams under time-varying loading. Int. J. Mech. Sci. 2021, 196, 106274. [Google Scholar] [CrossRef]
- Maleki-Bigdeli, M.A.; Sheikhi, S.; Baghani, M. Development of an analytical framework for viscoelastic corrugated-core sandwich plates and validation against FEM. Meccanica 2021, 56, 2103–2120. [Google Scholar] [CrossRef]
- Amanieh, H.R.T.; Roknizadeh, S.A.S.; Reza, A. Nonlinear Vibration Analysis of Viscoelastic Smart Sandwich Plates Through the use of Fractional Derivative Zener Model. Int. J. Struct. Stab. Dyn. 2021, 21, 2150061. [Google Scholar] [CrossRef]
- Garbowski, T.; Gajewski, T.; Grabski, J.K. Torsional and Transversal Stifness of Orthotropic Sandwich Panels. Materials 2020, 13, 5016. [Google Scholar] [CrossRef]
- Garbowski, T.; Gajewski, T.; Grabski, J.K. Role of Transverse Shear Modulus in the Performance of Corrugated Materials. Materials 2020, 13, 3791. [Google Scholar] [CrossRef]
- Douglas, B.E.; Yang, J. Transverse compressional damping in the vibratory response of elastic-viscoelastic-elastic beams. AIAA J. 1978, 16, 925–930. [Google Scholar] [CrossRef]
- Douglas, B.E. Compressional damping in three-layer beams incorporating nearly incompressible viscoelastic cores. J. Sound Vib. 1986, 104, 343–347. [Google Scholar] [CrossRef]
- Sisemore, C.L.; Smaili, A.A.; Darvennes, C.M. Experimental measurement of compressional damping in an elastic-viscoelastic-elastic sandwich beam. Proc. Am. Soc. Mech. Eng. Noise Control Acoust. Div. 1999, 26, 223–227. [Google Scholar]
- Sisemore, C.L.; Darvennes, C.M. Transverse vibration of elastic-viscoelastic-elastic sandwich beams: Compression-experimental and analytical study. J. Sound Vib. 2002, 252, 155–167. [Google Scholar] [CrossRef]
- Funari, M.F.; Greco, F.; Lonetti, P. Sandwich panels under interfacial debonding mechanisms. Compos. Struct. 2018, 203, 310–320. [Google Scholar] [CrossRef]
- Huang, Z.; Qin, Z.; Chu, F. Damping mechanism of elastic–viscoelastic–elastic sandwich structures. Compos. Struct. 2016, 153, 96–107. [Google Scholar] [CrossRef]
- Barkanov, E. Transient response analysis of structures made from viscoelastic materials. Intern. J. Numer. Methods Eng. 1999, 44, 393–403. [Google Scholar] [CrossRef]
Material Properties | Constraining Layer | Base Beam | Viscoelastic Layer (ZN-1) |
---|---|---|---|
Elastic modulus (GPa) | 699 | 699 | Biotmodel [24] |
Density (kg/m3) | 2700 | 2700 | 1010 |
Poisson’s ratio | 0.3 | 0.3 | 0.3 |
Thickness (mm) | 4.91 | 4.85 | 4.91 |
Length (mm) | 290 | 290 | 290 |
Width (mm) | 25 | 25 | 25 |
Order | Experimental Result | FE Model This Paper | ||||
---|---|---|---|---|---|---|
Natural Frequency (Hz) | Damping Ratio | Natural Frequency (Hz) | Error (%) | Damping Ratio | Error (%) | |
1 | 52.5 | 0.1350 | 51.6 | 1.7 | 0.1265 | 6.3 |
2 | 315.5 | 0.0846 | 279.8 | 1.1 | 0.0124 | 85.3 |
3 | 842.0 | 0.0546 | 747.5 | 3.36 | 0.0009 | 98.4 |
Material Properties | Constraining Layer | Base Beam | Viscoelastic Material Layer(EAR-C1002) |
---|---|---|---|
Elastic modulus (GPa) | 71 | 71 | Frequency dependent |
Density (kg/m3) | 2710 | 2710 | 1280 |
Poisson’s ratio | 0.3 | 0.3 | 0.3 |
Length (mm) | 314 | 314 | 314 |
Width (mm) | 25.4 | 25.4 | 25.4 |
Number | Thickness of Base Beam (mm) | Thickness of the Viscoelastic Layer (mm) | Thickness of the Constraining Layer (mm) |
---|---|---|---|
1 | 6.350 | 0.381 | 1.588 |
2 | 6.350 | 0.381 | 3.175 |
3 | 6.350 | 0.381 | 6.350 |
4 | 6.350 | 3.048 | 1.588 |
5 | 6.350 | 3.048 | 3.175 |
6 | 6.350 | 3.048 | 6.350 |
7 | 6.350 | 6.350 | 1.588 |
8 | 6.350 | 6.350 | 3.175 |
9 | 6.350 | 6.350 | 6.350 |
G∞ | 4 × 105 | ||
ak | 8.2244 | 1.1116 × 103 | 4.8334 × 102 |
bk | 2.2936 × 105 | 1.7267 × 106 | 5.9245 × 106 |
Beam | Experiment [35] | Sisemore Model [35] | Mead-Markus Model [16] | Compressional Model | |||
---|---|---|---|---|---|---|---|
Frequency (Hz) | Frequency (Hz) | Error (%) | Frequency (Hz) | Error (%) | Frequency (Hz) | Error (%) | |
First natural frequency | |||||||
1 | 47.3 | 47.3 | 0.1 | 55.7 | 18 | 47.8 | 1.0 |
2 | 44.5 | 45.2 | 1.5 | 56.6 | 27 | 43.8 | 1.6 |
3 | 44.2 | 48.5 | 9.7 | 66.9 | 51 | 48.6 | 9.9 |
4 | 43.0 | 44.0 | 2.4 | 48.4 | 13 | 44.5 | 3.4 |
5 | 40.9 | 42.3 | 3.6 | 47.6 | 17 | 41.2 | 0.73 |
6 | 40.7 | 44.1 | 8.5 | 55.4 | 36 | 45.6 | 12 |
7 | 39.6 | 40.7 | 2.8 | 45.0 | 14 | 41.2 | 4.0 |
8 | 38.1 | 39.5 | 3.6 | 44.4 | 17 | 38.5 | 1.0 |
9 | 37.8 | 41.0 | 8.5 | 52 | 38 | 41.7 | 10 |
Second natural frequency | |||||||
1 | 329 | 297 | 9.8 | 376 | 14 | 299 | 9.0 |
2 | 319 | 284 | 11 | 423 | 33 | 274 | 14 |
3 | 350 | 313 | 11 | 528 | 51 | 301 | 14 |
4 | 293 | 276 | 6.0 | 357 | 22 | 278 | 5.1 |
5 | 284 | 266 | 6.2 | 364 | 28 | 257 | 9.5 |
6 | 305 | 293 | 4.0 | 419 | 37 | 280 | 8.2 |
7 | 270 | 255 | 5.3 | 344 | 28 | 258 | 4.4 |
8 | 262 | 249 | 5.0 | 344 | 32 | 241 | 8.0 |
9 | 286 | 276 | 3.6 | 388 | 36 | 259 | 9.4 |
Beam | Experiment [24] | Sisemore Model [24] | Mead-Markus Model [11] | Compressional Model | |||
---|---|---|---|---|---|---|---|
Damping Ratio | Damping Ratio | Error (%) | Damping Ratio | Error (%) | Damping Ratio | Error (%) | |
Damping ratio corresponding to the first natural frequency | |||||||
1 | 0.0223 | 0.001 | 2200 | 0.0462 | 110 | 0.0146 | 35 |
2 | 0.0267 | 0.0015 | 1700 | 0.0768 | 190 | 0.0197 | 26 |
3 | 0.0215 | 0.0151 | 42 | 0.0914 | 330 | 0.0190 | 12 |
4 | 0.0214 | 0.0002 | 11000 | 0.0576 | 170 | 0.0288 | 35 |
5 | 0.0226 | 0.0023 | 880 | 0.0663 | 190 | 0.0326 | 44 |
6 | 0.0226 | 0.0203 | 11 | 0.0663 | 180 | 0.0271 | 20 |
7 | 0.0229 | 0.0003 | 7500 | 0.0663 | 190 | 0.0308 | 34 |
8 | 0.0224 | 0.0028 | 700 | 0.0702 | 210 | 0.0325 | 45 |
9 | 0.0231 | 0.0223 | 4 | 0.0596 | 160 | 0.0242 | 5 |
Damping ratio corresponding to the second natural frequency | |||||||
1 | 0.0513 | 9 × 10−5 | 57000 | 0.0392 | 24 | 0.0551 | 7 |
2 | 0.0826 | 0.0011 | 74000 | 0.0654 | 21 | 0.0765 | 7 |
3 | 0.1084 | 0.0073 | 1400 | 0.0809 | 25 | 0.0801 | 26 |
4 | 0.0914 | 0.0002 | 46000 | 0.0809 | 7 | 0.0879 | 4 |
5 | 0.1055 | 0.0015 | 6900 | 0.0980 | 18 | 0.1303 | 23 |
6 | 0.1027 | 0.0074 | 1300 | 0.1243 | 24 | 0.1474 | 43 |
7 | 0.0977 | 0.0005 | 19000 | 0.1274 | 23 | 0.1287 | 31 |
8 | 0.0967 | 0.0018 | 5300 | 0.1205 | 77 | 0.1218 | 26 |
9 | 0.1070 | 0.0072 | 1400 | 0.1707 | 12 | 0.1350 | 26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Pan, J.; Yang, Z.; Wang, X.; Chu, F. Transverse Vibration of Viscoelastic Sandwich Structures: Finite Element Modeling and Experimental Study. Materials 2021, 14, 7751. https://doi.org/10.3390/ma14247751
Huang Z, Pan J, Yang Z, Wang X, Chu F. Transverse Vibration of Viscoelastic Sandwich Structures: Finite Element Modeling and Experimental Study. Materials. 2021; 14(24):7751. https://doi.org/10.3390/ma14247751
Chicago/Turabian StyleHuang, Zhicheng, Jinbo Pan, Ziheng Yang, Xingguo Wang, and Fulei Chu. 2021. "Transverse Vibration of Viscoelastic Sandwich Structures: Finite Element Modeling and Experimental Study" Materials 14, no. 24: 7751. https://doi.org/10.3390/ma14247751
APA StyleHuang, Z., Pan, J., Yang, Z., Wang, X., & Chu, F. (2021). Transverse Vibration of Viscoelastic Sandwich Structures: Finite Element Modeling and Experimental Study. Materials, 14(24), 7751. https://doi.org/10.3390/ma14247751