Experimental Investigation of Stress Distributions in 3D Printed Graded Plates with a Circular Hole
Abstract
:1. Introduction
2. Theoretical Model
3. Experimental Procedures
3.1. Tension Test of the Printing Materials
3.2. Design and Fabrication of FGM Plate with a Circular Hole
3.3. Strain Measurement of FGM Plates
4. Results and Discussions
4.1. Theoretical Results
4.2. Experimental Results
4.3. Comparison of Experimental and Theoretical Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsukamoto, H. Design of functionally graded thermal barrier coatings based on a nonlinear micromechanical approach. Comput. Mater. Sci. 2010, 50, 429–436. [Google Scholar] [CrossRef]
- Noda, N.; Guo, L.C. Thermal shock analysis for a functionally graded plate with a surface crack. Acta Mech. 2008, 195, 157–166. [Google Scholar] [CrossRef]
- Yang, Q.; Gao, C.F. Reduction of the stress concentration around an elliptic hole by using a functionally graded layer. Acta Mech. 2016, 227, 2427–2437. [Google Scholar] [CrossRef]
- Goyat, V.; Verma, S.; Garg, R.K. On the reduction of stress concentration factor in an infinite panel using different radial functionally graded materials. Int. J. Mater. Prod. Technol. 2018, 57, 109–131. [Google Scholar] [CrossRef]
- Venkataraman, S.; Haftka, R.T.; Rapoff, A.J. Structural optimization using biological variables to help understand how bones design holes. Struct. Multidiscip. Optim. 2003, 25, 19–34. [Google Scholar] [CrossRef]
- Huang, J.; Venkataraman, S.; Rapoff, A.J.; Haftka, R.T. Optimization of axisymmetric elastic modulus distributions around a hole for increased strength. Struct. Multidiscip. Optim. 2003, 25, 225–236. [Google Scholar] [CrossRef]
- Huang, J.; Rapoff, A.J. Optimization design of plates with holes by mimicking bones through nonaxisymmetric functionally graded material. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2003, 217, 23–27. [Google Scholar] [CrossRef]
- Kubair, D.V.; Bhanu-Chandar, B. Stress concentration factor due to a circular hole in functionally graded panels under uniaxial tension. Int. J. Mech. Sci. 2008, 50, 732–742. [Google Scholar] [CrossRef]
- Wang, W.; Yuan, H.; Li, X.; Shi, P. Stress concentration and damage factor due to central elliptical hole in functionally graded panels subjected to uniform tensile traction. Materials 2019, 12, 422. [Google Scholar] [CrossRef] [Green Version]
- Goyat, V.; Verma, S.; Garg, R.K. Reduction of stress concentration for a rounded rectangular hole by using a functionally graded material layer. Acta Mech. 2017, 228, 3695–3707. [Google Scholar] [CrossRef]
- Goyat, V.; Verma, S.; Garg, R.K. Reduction in stress concentration around a pair of circular holes with functionally graded material layer. Acta Mech. 2018, 229, 1045–1060. [Google Scholar] [CrossRef]
- Berezhnoi, D.V.; Chickrin, D.E.; Gajnulina, L.R.; Kokunin, P.A.; Kurchatov, E.Y.; Sozutov, I.G. Calculation of stresses in superflywheel. Contemp. Eng. Sci. 2016, 9, 1591–1598. [Google Scholar] [CrossRef]
- Berezhnoi, D.V.; Sachenkov, A.A.; Xu, Y. Investigation of the effect of elastic-plastic loading modes in the manufacture of metal flywheels on their performance properties. IOP Conf. Ser. Mater. Sci. Eng. 2020, 709, 044018. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Kitipornchai, S.; Liew, K.M.; Lim, C.W.; Peng, L.X. Thermal stresses around a circular hole in a functionally graded plate. J. Therm. Stresses 2003, 26, 379–390. [Google Scholar] [CrossRef]
- Yang, Q.; Gao, C.F.; Chen, W.T. Stress analysis of a functional graded material plate with a circular hole. Arch. Appl. Mech. 2010, 80, 895–907. [Google Scholar] [CrossRef]
- Yang, Q.; Gao, C.F. Dynamic stress analysis of a functionally graded material plate with a circular hole. Meccanica 2013, 48, 91–101. [Google Scholar] [CrossRef]
- Mohammadi, M.; Dryden, J.R.; Jiang, L.Y. Stress concentration around a hole in a radially inhomogeneous plate. Int. J. Solids Struct. 2011, 48, 483–491. [Google Scholar] [CrossRef]
- Sburlati, R.; Atashipour, S.R.; Atashipour, S.A. Reduction of the stress concentration factor in a homogeneous panel with hole by using a functionally graded layer. Compos. Part B 2014, 61, 99–109. [Google Scholar] [CrossRef]
- Kubair, D.V. Stress concentration factors and stress-gradients due to circular holes in radially functionally graded panels subjected to anti-plane shear loading. Acta Mech. 2013, 224, 2845–2862. [Google Scholar] [CrossRef]
- Kubair, D.V. Stress concentration factor in functionally graded plates with circular holes subjected to anti-plane shear loading. J. Elast. 2014, 114, 179–196. [Google Scholar] [CrossRef]
- Nie, G.J.; Zhong, Z.; Batra, R.C. Material tailoring for reducing stress concentration factor at a circular hole in a functionally graded material (FGM) panel. Compos. Struct. 2018, 205, 49–57. [Google Scholar] [CrossRef]
- Nie, G.J.; Batra, R.C. Reducing stress concentration factor by strengthening circular hole with functionally graded incompressible material layer. Thin Wall Struct. 2019, 144, 106223. [Google Scholar] [CrossRef]
- Buskirk, S.R.; Venkataraman, S.; Ifju, P.G.; Rapoff, A.J. Functionally graded biomimetic plate with hole. In Proceedings of the AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Denver, CO, USA, 22–25 April 2002; p. 1330. [Google Scholar]
- Muskhelishvili, N.I. Some Basic Problem of Mathematical Theory of Elasticity; Noordhoff: Groningen, The Netherlands, 1975. [Google Scholar]
- Ge, Q.; Dunn, C.K.; Qi, H.J.; Dunn, M.L. Active origami by 4D printing. Smart Mater. Struct. 2014, 23, 094007. [Google Scholar] [CrossRef]
- Teoh, J.E.M.; An, J.; Chua, C.K.; Lv, M.; Krishnasamy, V.; Liu, Y. Hierarchically selfmorphing structure through 4D printing. Virtual Phys. Prototyp. 2017, 12, 61–68. [Google Scholar] [CrossRef]
- American Society of Testing and Materials. D638-14. In Standard Test Method for Tensile Properties of Plastics; American Society of Testing and Materials: West Conshohocken, PA, USA, 2014. [Google Scholar]
- Yang, Q.; Gao, C.F.; Chen, W.T. Stress concentration in a finite functionally graded material plate. Sci. China Phys. Mech. 2012, 55, 1263–1271. [Google Scholar] [CrossRef]
- Savin, G.N. Stress Concentration around Holes; Pergamon Press: London, UK, 1961. [Google Scholar]
Material 1 | Material 2 | Material 3 | Material 4 | Material 5 | Material 6 |
---|---|---|---|---|---|
2154 | 1881 | 1576 | 1174 | 880 | 445 |
Point #1 | Point #2 | Point #3 | Point #4 | Point #5 | Point #6 | Point #7 |
---|---|---|---|---|---|---|
7 | 11 | 15 | 19 | 23 | 35 | 45 |
Load | Point #1 | Point #2 | Point #3 | Point #4 | Point #5 | Point #6 | Point #7 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100 N | 484.2 | −59.2 | 370.2 | −38.4 | 422.7 | −75.1 | 379.2 | −81.4 | 502.5 | −153.7 | 309.7 | −151.7 | 263.4 | −142.9 |
200 N | 997.4 | −174 | 772.0 | −96.2 | 714.5 | −145.3 | 778.8 | −163.9 | 951.3 | −309.5 | 605.4 | −287.9 | 602.5 | −289.4 |
300 N | 1530.1 | −285.3 | 1177.3 | −155.2 | 1173.5 | −217.8 | 1192.3 | −239.4 | 1389.2 | −454.3 | 910.3 | −414.1 | 955.5 | −431.1 |
400 N | 2151.3 | −389.4 | 1662.5 | −211.4 | 1698.7 | −285.8 | 1669.3 | −308.8 | 1854.2 | −588.7 | 1235.7 | −529.5 | 1387.3 | −562.4 |
500 N | 2746.2 | −490.4 | 2129.4 | −256.9 | 2193.6 | −345.7 | 2122.2 | −379.7 | 2281.4 | −730.6 | 1610.7 | −657 | 1812.1 | −694.1 |
600 N | 3290.3 | −602.5 | 2605.7 | −311.6 | 2601.2 | −415.6 | 2589.7 | −447 | 2712.9 | −870.4 | 3200.5 | −813.2 | 2239.6 | −843.8 |
700 N | 3828.0 | −717.5 | 3043.2 | −361.9 | 2891.7 | −476.5 | 2989.0 | −510.2 | 3072.8 | −999.3 | 3619.9 | −947.4 | 2604.9 | −986.1 |
Point #1 | Point #2 | Point #3 | Point #4 | Point #5 | Point #6 | Point #7 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100 N | 659.4 | −78.1 | 496.5 | −58.8 | 435.2 | −49.2 | 388 | −52.7 | 341.6 | −74.2 | 198 | −33.7 | 127.3 | −39.9 |
200 N | 1238.6 | −121.9 | 971.4 | −116.1 | 872.5 | −92.7 | 746.3 | −96.9 | 688.3 | −120.9 | 410.7 | −59.3 | 286.4 | −69.2 |
300 N | 1795 | −170.1 | 1455.7 | −174 | 1346.5 | −141.2 | 1157 | −148.7 | 1055 | −165.9 | 640 | −88.2 | 464.9 | −98.3 |
400 N | 2376.8 | −212.3 | 1948.9 | −234.9 | 1824.5 | −189.2 | 1568.9 | −194.5 | 1446.1 | −214.6 | 860 | −113.7 | 651.2 | −129.9 |
500 N | 2965.8 | −258.1 | 2407.9 | −294.3 | 2294.7 | −235.4 | 1978.4 | −242.7 | 1825.6 | −260.9 | 1074.6 | −139.2 | 833.5 | −158.5 |
600 N | 3567.6 | −300.2 | 2876 | −354.2 | 2764.9 | −283.3 | 2380.8 | −292.7 | 2210.6 | −307.6 | 1285 | −169.5 | 1014 | −187.9 |
700 N | 4238.4 | −340.3 | 3293.6 | −412.3 | 3187.2 | −327.9 | 2740.5 | −343 | 2557.1 | −349.3 | 1476.9 | −194.6 | 1182.6 | −219.4 |
Point Number | Theoretical Result | Experimental Result | Error | |||
---|---|---|---|---|---|---|
Decreasing Plate | Increasing Plate | Decreasing Plate | Increasing Plate | Decreasing Plate | Increasing Plate | |
Point #1 | 2.631 | 0.682 | 2.234 | 0.514 | −15.1% | −24.6% |
Point #2 | 1.635 | 0.921 | 1.597 | 0.781 | −2.3% | −15.2% |
Point #3 | 1.342 | 0.995 | 1.220 | 1.033 | −9.1% | 3.8% |
Point #4 | 1.101 | 1.146 | 0.960 | 1.177 | −12.8% | 2.7% |
Point #5 | 0.954 | 1.207 | 0.672 | 1.323 | −29.6% | 9.6% |
Point #6 | 0.835 | 1.114 | 0.451 | 0.874 | −46.0% | −21.5% |
Point #7 | 0.921 | 1.058 | 0.306 | 0.711 | −66.8% | −32.8% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Cao, H.; Tang, Y.; Li, Y.; Chen, X. Experimental Investigation of Stress Distributions in 3D Printed Graded Plates with a Circular Hole. Materials 2021, 14, 7845. https://doi.org/10.3390/ma14247845
Yang Q, Cao H, Tang Y, Li Y, Chen X. Experimental Investigation of Stress Distributions in 3D Printed Graded Plates with a Circular Hole. Materials. 2021; 14(24):7845. https://doi.org/10.3390/ma14247845
Chicago/Turabian StyleYang, Quanquan, He Cao, Youcheng Tang, Yun Li, and Xiaogang Chen. 2021. "Experimental Investigation of Stress Distributions in 3D Printed Graded Plates with a Circular Hole" Materials 14, no. 24: 7845. https://doi.org/10.3390/ma14247845
APA StyleYang, Q., Cao, H., Tang, Y., Li, Y., & Chen, X. (2021). Experimental Investigation of Stress Distributions in 3D Printed Graded Plates with a Circular Hole. Materials, 14(24), 7845. https://doi.org/10.3390/ma14247845