A Recurrent Neural Network-Based Method for Dynamic Load Identification of Beam Structures
Abstract
:1. Introduction
2. Dynamic Load Identification Framework Based on RNN
2.1. Basic Description
2.2. Recurrent Neural Network Implementation
2.3. Long Short-Term Memory Implementation
3. Numerical Studies
- Step A: Establish the deep network with the BLSTM layers, LSTM layers and full connection layers.
- Step B: Two groups of vibration response data are prepared. The first is the vibration response under an unknown dynamic load which is to be identified. The second is the vibration response under a known dynamic load which is different from the first group and used for training. The proposed algorithm is then trained using the second group with the known dynamic load, while the responses obtained from the first group are used to identify the unknown load. Furthermore, these data groups are divided into a training set, a verification set and a test set on the basis of equipment computational ability.
- Step C: The backpropagation through time (BPTT) algorithm is used as a model training method to update the parameters of the model. In addition, the initial learning rate and batch size are set in the light of available computer memory. To accelerate the training speed, the training process is run on a GPU device.
- Step D: The new vibration response data are used to test the identification effect of the model. In this paper, two methods are introduced to appraise the effect of identification: the peak relative error method (PREM) and the signal-to-noise ratio (SNR). PREM is the maximum value of the peak error of the load identification result and can be written in Equation (35) as:
3.1. Model Parameters
3.2. Considered Cases
3.3. Identification Results and Comparisons
4. Experimental Results
4.1. Experimental Setting
4.2. Experimental Results
5. Implementation Factors
5.1. Effect of Different Architectures and Hyperparameters
5.2. Effect of Multi-Point Excitations
5.3. Effect of Different Measuring Points
6. Conclusions
- Compared with conventional methods, the proposed algorithm can avoid the need to solve the model parameters of the structure. This can significantly reduce the difficulty of dynamic load identification as assessing the dynamic properties of a structure cannot always be possible.
- The presented results shows that the proposed algorithm for dynamic load identification is accurate, stable and robust.
- The proposed method is suitable for single-point or multi-point excitations. Similarly, the method does not display sensitivity to changing the vibration measurement layouts.
- Using different structures for the model network and the choice of the hyperparameters has a limited impact on the identification results. The choice of the structure and the hyperparameters can then be made based on balancing the required accuracy against the time available to train the network.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mendrok, K.; Uhl, T. Load identification using a modified modal filter technique. J. Vib. Control 2010, 16, 89–105. [Google Scholar] [CrossRef]
- Alkhatib, R.; Golnaraghi, F.M. Active structural vibration control: A review. Shock Vib. Dig. 2003, 35, 367. [Google Scholar] [CrossRef]
- Aucejo, M.; Smet, O.D. An optimal Bayesian regularization for force reconstruction problems. Mech. Syst. Signal Process. 2019, 126, 98–115. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Ou, J. Force identification of dynamic systems using virtual work principle. J. Sound Vib. 2015, 337, 71–94. [Google Scholar] [CrossRef]
- Jiang, J.; Kong, D. Joint user scheduling and MU-MIMO hybrid beamforming algorithm for mmWave FDMA massive MIMO system. Int. J. Antennas Propag. 2016, 2016 Pt 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Seaid, M.; Mohamed, M.S.; Li, H. Inverse algorithm for real-time road roughness estimation for autonomous vehicles. Arch. Appl. Mech. 2020, 90, 1333–1348. [Google Scholar] [CrossRef]
- Yi, L.; Shepard, W.S. Dynamic force identification based on enhanced least squares and total least-squares schemes in the frequency domain. J. Sound Vib. 2005, 282, 37–60. [Google Scholar]
- Wu, E.; Tsai, C.Z.; Tseng, L.H. A deconvolution method for force reconstruction in rods under axial impact. J. Acoust. Soc. Am. 1998, 104, 1418–1426. [Google Scholar] [CrossRef]
- Zheng, S.; Lin, Z.; Lian, X.; Li, K. Technical note: Coherence analysis of the transfer function for dynamic force identification. Mech. Syst. Signal Process. 2011, 25, 2229–2240. [Google Scholar] [CrossRef]
- Liu, R.; Doriban, E.; Hou, Z.; Qian, K. Dynamic load identification for mechanical systems: A review. Arch. Comput. Methods Eng. 2021, 14, 1–33. [Google Scholar] [CrossRef]
- Bartlett, F.D.; Flannelly, W.G. Model verification of force determination for measuring vibratory loads. J. Am. Helicopter Soc. 1979, 24, 10–18. [Google Scholar] [CrossRef]
- Chao, M.; Hongxing, H.; Feng, X. The identification of external forces for a nonlinear vibration system in frequency domain. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2014, 228, 1531–1539. [Google Scholar] [CrossRef]
- Lage, Y.E.; Maia, N.M.M.; Neves, M.M.; Ribeiro, A.M.R. Force identification using the concept of displacement transmissibility. J. Sound Vib. 2013, 332, 1674–1686. [Google Scholar] [CrossRef]
- Pack, T.; Haug, E.J. Ill-Conditioned equations in kinematics and dynamics of machines. Int. J. Numer. Methods Eng. 2010, 26, 217–230. [Google Scholar]
- Zhou, L.; Sheng, S.F.; Wang, B.X.; Lian, X.M.; Li, K.Q. Coherence analysis method for dynamic force identification. J. Vib. Eng. 2011, 24, 14–19. [Google Scholar]
- Wang, L.; Peng, Y.; Xie, Y.; Chen, B.; Du, Y. A new iteration regularization method for dynamic load identification of stochastic structures. Mech. Syst. Signal Process. 2021, 156, 107586. [Google Scholar] [CrossRef]
- Jiang, J.; Tang, H.Z.; Mohamed, M.S.; Li, S.Y.; Chen, J.D. Augmented tikhonov regularization method for dynamic load identification. Appl. Sci. 2020, 10, 6348. [Google Scholar] [CrossRef]
- He, Z.C.; Zhang, Z.; Li, E. Random dynamic load identification for stochastic structural-acoustic system using an adaptive regularization parameter and evidence theory. J. Sound Vib. 2020, 471, 115188. [Google Scholar] [CrossRef]
- Feng, Y.; Gao, W. A quotient function method for selecting adaptive dynamic load identification optimal regularization parameter. DEStech Trans. Eng. Technol. Res. 2020. [Google Scholar] [CrossRef]
- Liu, C.; Ren, C.; Wang, N. Load identification method based on interval analysis and Tikhonov regularization and its application. Int. J. Electr. Comput. Eng. 2019, 11, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Yang, G.L.; Xiao, H. Dynamic load identification theoretical summary and the application on mining machinery. Appl. Mech. Mater. 2013, 330, 811–814. [Google Scholar] [CrossRef]
- Hwang, J.S.; Lee, T.J.; Park, H.J.; Park, S.H. Dynamic force identification of a structure using state variable in the frequency domain. J. Wind. Eng. 2016, 20, 195–202. [Google Scholar]
- Zhang, J.; Li, W. Six-force-factor identification of helicopters. Acta Aeronaut. Astronaut. Sin. 1986, 1986, 2. [Google Scholar]
- Jie, L.; Meng, X.; Chao, J.; Xu, H.; Zhang, D. Time-domain Galerkin method for dynamic load identification. Int. J. Numer. Methods Eng. 2015, 105, 620–640. [Google Scholar]
- Jiang, J.; Ding, M.; Li, J. A novel time-domain dynamic load identification numerical algorithm for continuous systems. Mech. Syst. Signal Process. 2021, 160, 107881. [Google Scholar] [CrossRef]
- Chi, L.; Liu, J.; Jiang, C. Radial Basis Shape Function Method for Identification of Dynamic Load in Time Domain. Chin. J. Mech. Eng. 2013, 24, 285–289. [Google Scholar]
- Li, H.; Jiang, J.; Mohamed, M.S. Online dynamic load identification based on extended Kalman filter for structures with varying parameters. Symmetry 2021, 13, 1372. [Google Scholar] [CrossRef]
- Jiang, J.; Mohamed, M.S.; Seaid, M. Fast inverse solver for identifying the diffusion coefficient in time-dependent problems using noisy data. Arch. Appl. Mech. 2020, 4, 1623–1639. [Google Scholar] [CrossRef]
- Jiang, J.; Luo, S.Y.; Mohamed, M.S.; Liang, Z. Real-Time identification of dynamic loads using inverse Solution and Kalman filter. Appl. Sci. 2020, 10, 6767. [Google Scholar] [CrossRef]
- Liu, J.; Meng, X.; Zhang, D.; Jiang, C.; Han, X. An efficient method to reduce ill-posedness for structural dynamic load identification. Mech. Syst. Signal Process. 2017, 95, 273–285. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, F.Q. Dynamic load identification in multi-freedom structure based on precise integration. J. Appl. Sci. 2006, 24, 547–550. [Google Scholar]
- Mxa, B.; Nan, J.B. Dynamic load identification for interval structures under a presupposition of ‘being included prior to being measured’. Appl. Math. Model. 2020, 85, 107–123. [Google Scholar]
- Yu, B.; Wu, Y.; Hu, P.; Ding, J.; Wang, B. A non-iterative identification method of dynamic loads for different structures. J. Sound Vib. 2020, 483, 115508. [Google Scholar] [CrossRef]
- Liu, J.; Li, K. Sparse identification of time-space coupled distributed dynamic load. Mech. Syst. Signal Process. 2021, 148, 107177. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, F.; Jiang, J. identification of multi-point dynamic load positions based on filter coefficient method. J. Vib. Eng. Technol. 2021, 9, 563–573. [Google Scholar] [CrossRef]
- Cao, X.; Sugiyama, Y.; Mitsui, Y. Application of artificial neural networks to load identification. Comput. Struct. 1998, 69, 63–78. [Google Scholar] [CrossRef]
- Yl, A.; Lei, W.; Kg, C. A support vector regression (SVR)-based method for dynamic load identification using heterogeneous responses under interval uncertainties. Appl. Soft Comput. 2021, 110, 107599. [Google Scholar]
- Wang, C.; Chen, D.; Chen, J.; Lai, X.; He, T. Deep regression adaptation networks with model-based transfer learning for dynamic load identification in the frequency domain. Eng. Appl. Artif. Intell. 2021, 102, 104244. [Google Scholar] [CrossRef]
- Zhou, J.M.; Dong, L.; Guan, W.; Yan, J. Impact load identification of nonlinear structures using deep Recurrent Neural Network. Mech. Syst. Signal Process. 2019, 133, 106292. [Google Scholar] [CrossRef]
- Cooper, S.B.; Dimaio, D. Static load estimation using artificial neural network: Application on a wing rib. Adv. Eng. Softw. 2018, 125, 113–125. [Google Scholar] [CrossRef]
- Graves, A.; Mohamed, A.R.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013 IEEE International Conference on Acoustics Speech, and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013. [Google Scholar]
- Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [Google Scholar] [CrossRef] [Green Version]
- Hao, N.; Yi, J.; Wen, Z.; Tao, J. Recurrent neural network based language model adaptation for accent mandarin speech. In Chinese Conference on Pattern Recognition; Springer: Singapore, 2016; pp. 607–617. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 2005, 18, 602–610. [Google Scholar] [CrossRef]
- Francisco, O.; Daniel, R. Deep convolutional and LSTM recurrent neural networks for multimodal Wearable Activity Recognition. Sensors 2016, 16, 115. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Zou, Y.; Zhang, S.; Tang, J.; Wang, Y. Short-Term speed prediction using remote microwave sensor data: Machine learning versus statistical model. Math. Probl. Eng. 2016, 2016, 1–13. [Google Scholar]
- Liu, J.; Shahroudy, A.; Dong, X.; Gang, W. Spatio-Temporal LSTM with trust gates for 3D human action recognition. In European Conference on Computer Vision; Springer: Cham, Germany, 2016; pp. 816–833. [Google Scholar]
- Li, C.; Zhang, Y.; Zhao, G. Deep learning with long short-term memory networks for air temperature predictions. In Proceedings of the 2019 International Conference on Artificial Intelligence and Advanced Manufacturing, Dublin, Ireland, 16–18 October 2019. [Google Scholar]
- Haber, R.E.; Alique, J.R. Fuzzy logic-based torque control system for milling process optimization. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2007, 37, 941–950. [Google Scholar] [CrossRef]
- Haber, R.E.; Alique, J.R.; Alique, A.; Hernandez, J.; Uribe-Etxebarria, R. Embedded fuzzy-control system for machining processes: Results of a case study. Comput. Ind. 2003, 50, 353–366. [Google Scholar] [CrossRef]
- Villalonga, A.; Beruvides, G.; Castano, F.; Haber, R. Cloud-based industrial cyber-physical system for data-driven reasoning. A review and use case on an industry 4.0 pilot line. IEEE Trans. Industr. Inform. 2020, 16, 5975–5984. [Google Scholar] [CrossRef]
- Stachurski, Z.H. On structure and properties of amorphous materials. Materials 2011, 4, 1564–1598. [Google Scholar] [CrossRef]
- Domenico, M.; Andrea, A.; Marco, B.; Giacomo, C.; Chiara, V. The use of empirical methods for testing granular materials in analogue modelling. Materials 2017, 10, 635. [Google Scholar] [CrossRef]
- Duan, Q.; An, J.; Mao, H.; Liang, D.; Li, H.; Wang, S.; Huang, C. Review about the application of fractal theory in the research of packaging materials. Materials 2021, 14, 860. [Google Scholar] [CrossRef]
- Zhang, N.; She, W.; Du, F.; Xu, K. Experimental study on mechanical and functional properties of reduced graphene Oxide/Cement composites. Materials 2020, 13, 3015. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z. Identification of dynamic load based on series expansion. J. Vib. Eng. 1996, 1996, 6461427. [Google Scholar]
- Charles, F.D.; Yuan, X. Orthogonal Polynomials of Several Variables; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Bhat, R.B. Natural frequencies of rectangular plates using characteristic orthogonal polynomials in Rayleigh-Ritz method. J. Sound Vib. 1985, 102, 493–499. [Google Scholar] [CrossRef]
- Lee, D.S. Improved Activation Functions of Deep Convolutional Neural Networks for Image Classification. Master’s Thesis, Graduate School of UNIST, Ulsan, Korea, February 2017. [Google Scholar]
- Feng, L.I.Z.C. Identification of moving loads for complex bridge structures based on time finite element model. Trans. Tianjin Univ. 2006, 9, 1043–1047. [Google Scholar]
- Hwang, K.; Sung, W. Character-level incremental speech recognition with recurrent neural networks. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016. [Google Scholar]
- Shin, J.; Yeon, K.; Kim, S.; Sunwoo, M.; Han, M. Comparative study of Markov chain with recurrent neural network for short term velocity prediction implemented on an embedded system. IEEE Access 2021, 9, 24755–24767. [Google Scholar] [CrossRef]
- Munir, K.; Elahi, H.; Ayub, A.; Frezza, F.; Rizzi, A. Cancer diagnosis using deep learning: A bibliographic review. Cancers 2019, 11, 1235. [Google Scholar] [CrossRef] [Green Version]
- Ji, Z.; Wang, B.; Deng, S.P.; You, Z. Predicting dynamic deformation of retaining structure by LSSVR-based time series method. Neurocomputing 2014, 137, 165–172. [Google Scholar] [CrossRef]
- Shi, Z.L.; Li, Z.X. Methods of seismic response analysis for long-span bridges under multi-support excitations of random earthquake ground motion. Earthq. Eng. Eng. Vib. 2003, 23, 124–130. [Google Scholar]
- Bai, F.Y.; Liu, J.Q.; Li, L. Elasto-plastic analysis of large span reticulated shell structure under multi-support excitations. Adv. Mat. Res. 2012, 446, 54–58. [Google Scholar]
Parameters | Value |
---|---|
Length l | 5 m |
Width a | 0.25 m |
Thickness b | 0.05 m |
Elastic modulus E | 210 GPa |
Poisson’s ratio ε | 0.31 |
Density ρ |
Measuring Point | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Position (m) | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 4.5 |
Modal Order | 1 | 2 | 3 | 4 | 5 |
Frequency (Hz) | 4.7 | 18.8 | 42.3 | 52.6 | 74.9 |
Modal Order | 6 | 7 | 8 | 9 | 10 |
Frequency (Hz) | 116.4 | 117.1 | 142.6 | 165.4 | 219.1 |
Case | Dynamic Load | Excitation Parameters | Sampling Parameters |
---|---|---|---|
1 | Sinusoidal | The excitation for training is | |
2 | Impact | The excitation for training is | |
3 | Random | white Gaussian noise The excitation for training is white Gaussian noise |
No Noise | RNN with Noise | ||||
---|---|---|---|---|---|
RNN | MLP | 10 dB | 20 dB | 30 dB | |
PREM | 0.22% | 29.51% | 6.18% | 4.24% | 2.66% |
SNR | 55.07 | 13.39 | 24.50 | 22.73 | 32.11 |
No Noise | RNN with Noise | ||||
---|---|---|---|---|---|
RNN | MLP | 10 dB | 20 dB | 30 dB | |
PREM | 2.94% | 19.16% | 9.37% | 5.70% | 4.64% |
SNR | 34.10 | 17.15 | 22.52 | 27.01 | 28.62 |
No Noise | RNN with Noise | ||||
---|---|---|---|---|---|
RNN | MLP | 10 dB | 20 dB | 30 dB | |
PREM | 1.71% | 40.65% | 1.69% | 1.43% | 0.82% |
SNR | 43.27 | 14.85 | 25.29 | 35.98 | 47.20 |
Parameters | Value |
---|---|
Length l | 0.7 m |
Width a | 0.04 m |
Thickness b | 0.008 m |
Elastic modulus E | 210 GPa |
Poisson’s ratio ε | 0.3 |
Density ρ | 7800 kg/m3 |
Case | Dynamic Load | Excitation Parameters | Sampling Parameters |
---|---|---|---|
1 | Sinusoidal | The excitation for training is | |
2 | Random | white Gaussian noise The excitation for training is white Gaussian noise |
Excitation | ||
---|---|---|
Sinusoidal Excitation | Random Excitation | |
PREM | 1.27% | 1.26% |
SNR | 36.42 | 46.28 |
Hyperparameter | Training Time by GPU(CPU) in min | PREM | SNR | ||
---|---|---|---|---|---|
Number of Neurons | Learning Rate | ||||
1BLSTM+ 1LSTM+ 2FC | 128 | 0.01 | 18(25) | 1.35% | 33.28 |
0.005 | 41(68) | 1.27% | 44.29 | ||
0.001 | 52(86) | 1.27% | 45.42 | ||
256 | 0.01 | 29(48) | 1.25% | 46.42 | |
0.005 | 58(77) | 1.27% | 45.20 | ||
0.001 | 85(132) | 1.22% | 45.58 | ||
2LSTM+ 2FC | 128 | 0.01 | 12(17) | 2.86% | 28.17 |
0.005 | 28(36) | 1.52% | 35.74 | ||
0.001 | 46(66) | 1.48% | 37.55 | ||
256 | 0.01 | 25(40) | 4.79% | 30.74 | |
0.005 | 65(88) | 2.87% | 38.26 | ||
0.001 | 85(125) | 2.76% | 38.65 | ||
2RNN+ 2FC | 128 | 0.01 | 12(15) | 8.78% | 22.93 |
0.005 | 21(32) | 6.42% | 25.66 | ||
0.001 | 32(47) | 7.29% | 27.31 | ||
256 | 0.01 | 22(25) | 5.31% | 23.75 | |
0.005 | 34(47) | 4.10% | 28.12 | ||
0.001 | 41(56) | 4.08% | 31.07 |
Excitation | ||
---|---|---|
Excitation 1 | Excitation 2 | |
PREM | 7.07% | 3.52% |
SNR | 20.52 | 24.27 |
Different Layouts of Measuring Points | |||||
---|---|---|---|---|---|
Layout 1 | Layout 2 | Layout 3 | Layout 4 | Layout 5 | |
PREM | 1.60% | 2.42% | 0.90% | 2.35% | 1.61% |
SNR | 34.02 | 29.41 | 30.47 | 30.32 | 28.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Jiang, J.; Chen, G.; Mohamed, M.S.; Lu, F. A Recurrent Neural Network-Based Method for Dynamic Load Identification of Beam Structures. Materials 2021, 14, 7846. https://doi.org/10.3390/ma14247846
Yang H, Jiang J, Chen G, Mohamed MS, Lu F. A Recurrent Neural Network-Based Method for Dynamic Load Identification of Beam Structures. Materials. 2021; 14(24):7846. https://doi.org/10.3390/ma14247846
Chicago/Turabian StyleYang, Hongji, Jinhui Jiang, Guoping Chen, M Shadi Mohamed, and Fan Lu. 2021. "A Recurrent Neural Network-Based Method for Dynamic Load Identification of Beam Structures" Materials 14, no. 24: 7846. https://doi.org/10.3390/ma14247846
APA StyleYang, H., Jiang, J., Chen, G., Mohamed, M. S., & Lu, F. (2021). A Recurrent Neural Network-Based Method for Dynamic Load Identification of Beam Structures. Materials, 14(24), 7846. https://doi.org/10.3390/ma14247846