Predictive Analytical Modeling of Thermo-Mechanical Effects in Orthogonal Machining
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Procedures
2.2. Response Surface Methodology Implemented
2.3. Theoretical Evaluation of the Cutting Temperature
2.4. Model Processing
3. Results and Discussion
3.1. Experimental Design and Results
3.1.1. Direct Effects of Factors on Response
3.1.2. Pareto Chart
3.1.3. Analysis of Variance
3.1.4. Regression Model
3.2. J-C Model Results
3.2.1. Evaluation of Cutting Parameters
3.2.2. Evaluation of the Tool Geometric Parameters
3.2.3. Temperature Distribution at the Tool/Chip Interface
3.2.4. Evaluation of Shear Stress
3.3. Response Surface
4. Discussion
5. Conclusions
- ✓
- The experimental temperature correlates well with the predicted temperature with less than 10% uncertainty. This confirms that the presented temperature model can be used for the prediction of the cutting temperature of metallic materials;
- ✓
- The identification of three factors controlling the temperature variation during orthogonal machining: cutting speed, tool nose radius, rake angle and the interaction between cutting speed and rake angle;
- ✓
- The establishment of a relationship between temperature variation and dust generation;
- ✓
- The dust generation which is the thermo-mechanical origin, can be quantified by the cutting temperatures during orthogonal machining and it is closely related to the heat source generated in the SSZ.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wojciechowski, S.; Matuszak, M.; Powałka, B.; Madajewski, M.; Maruda, R.; Królczyk, G. Prediction of cutting forces during micro end milling considering chip thickness accumulation. Int. J. Mach. Tools Manuf. 2019, 147, 103466. [Google Scholar] [CrossRef]
- Zang, J.; Zhao, J.; Li, A.; Pang, J. Serrated chip formation mechanism analysis for machining of titanium alloy Ti-6Al-4V based on thermal property. Int. J. Adv. Manuf. Technol. 2018, 98, 119–127. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, J.; Xu, X.; Zhao, W. Experimental study on fracture mechanism transformation in chip segmentation of Ti-6Al-4V alloys during high-speed machining. J. Mater. Process. Technol. 2018, 257, 132–140. [Google Scholar] [CrossRef]
- Wang, C.; Xie, Y.; Zheng, L.; Qin, Z.; Tang, D.; Song, Y. Research on the chip formation mechanism during the high-speed milling of hardened steel. Int. J. Mach. Tools Manuf. 2014, 79, 31–48. [Google Scholar] [CrossRef]
- Çakīr, O.; Yardimeden, A.; Ozben, T.; Kilickap, E. Selection of cutting fluids in machining processes. J. Achiev. Mater. Manuf. Eng. 2007, 25, 99–102. [Google Scholar]
- Mozammel, M.; Khan, M.A.; Dhar, N.R. High-pressure coolant on flank and rake surfaces of tool in turning of Ti-6Al-4V: Investigations on surface roughness and tool wear. Int. J. Adv. Manuf. Technol. 2017, 90, 1825–1834. [Google Scholar]
- Khettabi, R.; Nouioua, M.; Djebara, A.; Songmene, V. Effect of MQL and dry processes on the particle emission and part quality during milling of aluminum alloys. Int. J. Adv. Manuf. Technol. 2017, 92, 2593–2598. [Google Scholar] [CrossRef]
- Kulkarni, H.B.; Nadakatti, M.M.; Kulkarni, S.C.; Kulkarni, R.M. Investigations on effect of nanofluid based minimum quantity lubrication technique for surface milling of Al7075-T6 aerospace alloy. Mater. Today Proc. 2020, 27, 251–256. [Google Scholar] [CrossRef]
- Ahmed, L.S.; Govindaraju, N.; Kumar, M.P. Experimental investigations on cryogenic cooling in the drilling of titanium alloy. Mater. Manuf. Process. 2016, 31, 603–607. [Google Scholar] [CrossRef]
- Niu, Z.; Jiao, F.; Cheng, K. An innovative investigation on chip formation mechanisms in micro-milling using natural diamond and tungsten carbide tools. J. Manuf. Process. 2018, 31, 382–394. [Google Scholar] [CrossRef]
- Jomaa, W.; Mechri, O.; Lévesque, J.; Songmene, V.; Bocher, P.; Gakwaya, A. Finite element simulation and analysis of serrated chip formation during high–speed machining of AA7075–T651 alloy. J. Manuf. Process. 2017, 26, 446–458. [Google Scholar] [CrossRef]
- Mia, M.; Rifat, A.; Tanvir, M.F.; Gupta, M.K.; Hossain, M.J.; Goswami, A. Multi-objective optimization of chip-tool interaction parameters using Grey-Taguchi method in MQL-assisted turning. Measurement 2018, 129, 156–166. [Google Scholar] [CrossRef]
- Gupta, M.K.; Sood, P.; Sharma, V.S. Optimization of machining parameters and cutting fluids during nano-fluid based minimum quantity lubrication turning of titanium alloy by using evolutionary techniques. J. Clean. Prod. 2016, 135, 1276–1288. [Google Scholar] [CrossRef]
- Sivaiah, P.; Chakradhar, D. Effect of cryogenic coolant on turning performance characteristics during machining of 17-4 PH stainless steel: A comparison with MQL, wet, dry machining. CIRP J. Manuf. Sci. Technol. 2018, 21, 86–96. [Google Scholar] [CrossRef]
- Granger, C. Dry machining’s double benefit. Machinery 1994, 152, 14–15. [Google Scholar]
- Aronson, R.B. Why dry machining? Manuf. Eng. 1995, 114, 33–36. [Google Scholar]
- Young, P.; Byrne, G.; Cotterell, M. Manufacturing and the Environment. Int. J. Adv. Manuf. Technol. 1997, 13, 488–493. [Google Scholar] [CrossRef]
- Popke, H.; Emmer, T.; Steffenhagen, J. Environmentally clean metal cutting processes machining on the way to dry cutting, Proceedings of the Institution of Mechanical Engineers. Part B J. Eng. Manuf. 1999, 213, 329–332. [Google Scholar] [CrossRef]
- Adler, D.P.; Hii, W.W.-S.; Michalek, D.J.; Sutherland, J.W. Examining the Role of Cutting Fluids in Machining and Efforts to Address Associated Environmental/Health Concerns. Mach. Sci. Technol. 2006, 10, 23–58. [Google Scholar] [CrossRef]
- Dasch, J.; D’Arcy, J.; Gundrum, A.; Sutherland, J.W.; Johnson, J.; Carlson, D. Characterization of Fine Particles from Machining in Automotive Plants. J. Occup. Environ. Hyg. 2005, 2, 1–14. [Google Scholar] [CrossRef]
- Ugulino, B.; Hernández, R.E. Effect of cutting parameters on dust emission and surface roughness during helical planning red oak wood. Wood Fiber Sci. 2017, 49, 323–331. [Google Scholar]
- Khettabi, R.; Songmene, V.; Zaghbani, I.; Masounave, J. Modeling of particle emission during dry orthogonal cutting. J. Mater. Eng. Perform. 2010, 19, 776–789. [Google Scholar] [CrossRef] [Green Version]
- Djebara, A.; Alliche, M.A.; Khettabi, A.; Songmene, V. Dust Generation Evaluation by a Predicting Model of Cutting Forces and Machining Temperature During Orthogonal Cutting of Aluminum Alloys. J. Pollut. Eff. Control 2021, 9, 277. [Google Scholar]
- Sutherland, J.W.; Kulur, V.N.; King, N.C. Experimental investigation of air quality in wet and dry turning. CIRP Ann. Manuf. Technol. 2000, 49, 61–64. [Google Scholar] [CrossRef]
- Songmene, V.; Khettabi, R.; Zaghbani, I.; Kouam, J.; Djebara, A. Machining and machinability of aluminum alloys. In Aluminium Alloys, Theory and Applications; InTech: London, UK, 2011; pp. 377–400. [Google Scholar] [CrossRef] [Green Version]
- Djebara, A.; Zedan, Y.; Kouam, J.; Songmene, V. The effect of the heat treatment on the dust emission during machining of an Al-7Si-Mg cast alloys. J. Mater. Eng. Perform. 2013, 22, 3840–3853. [Google Scholar] [CrossRef] [Green Version]
- Johnson, G.R.; Cook, W.H. A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures. In Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 19–21 April 1983; Volume 7, pp. 541–547. [Google Scholar]
- Zerilli, F.J.; Armstrong, R.W. Dislocation-mechanics-based constitutive relations for material dynamics calculations. J. Appl. Phys. 1987, 61, 1816–1825. [Google Scholar] [CrossRef] [Green Version]
- Salvado, F.C.; Teixeira-Dias, F.; Walley, S.M.; Lea, L.; Cardoso, J. A review on the strain rate dependency of the dynamic viscoplastic response of FCC metals. Prog. Mater. Sci. 2017, 88, 186–231. [Google Scholar] [CrossRef] [Green Version]
- Lieou, C.K.; Bronkhorst, C.A. Dynamic recrystallization in adiabatic shear banding: Effective-temperature model and comparison to experiments in ultrafine-grained titanium. Int. J. Plast. 2018, 111, 107–121. [Google Scholar] [CrossRef] [Green Version]
- Klopp, R.W.; Clifton, R.J.; Shawki, T.G. Pressure-shear impact and the dynamic viscoplastic response of metals. Mech. Mater. 1985, 4, 375–385. [Google Scholar] [CrossRef]
- Ludwik, P. Elemente der Technologischen Mechanik; Springer: Berlin/Heidelberg, Germany, 1909. [Google Scholar]
- Johnson, G.R.; Cook, W.H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 1985, 21, 31–48. [Google Scholar] [CrossRef]
- Pandya, K.S.; Roth, C.C.; Mohr, D. Strain rate and temperature dependent fracture of aluminum alloy 7075: Experiments and neural network modeling. Int. J. Plast. 2020, 135, 102788. [Google Scholar] [CrossRef]
- Aktürk, M.; Boy, M.; Gupta, M.K.; Waqar, S.; Krolczyk, G.M.; Korkmaz, M.E. Numerical and Experimental Investigations of Built Orientation Dependent Johnson-Cook Model For Selective Laser Melting Manufactured AlSi10Mg. J. Mater. Res. Technol. 2021, 15, 6244–6259. [Google Scholar] [CrossRef]
- Yang, X.; Liu, C.R. A new stress-based model of friction behavior in machining and its significant impact on residual stresses computed by finite element method. Int. J. Mech. Sci. 2002, 44, 703–723. [Google Scholar] [CrossRef]
- Bahi, S.; Nouari, M.; Moufki, A.; El Mansori, M.; Molinari, A. A new friction law for sticking and sliding contacts in machining. Tribol. Int. 2011, 44, 764–771. [Google Scholar] [CrossRef]
- Cakir, E.; Özlü, E.; Bakkal, M.; Budak, E. Investigation of temperature distribution in orthogonal cutting through dual-zone contact model on the rake face. Int. J. Adv. Manuf. Technol. 2018, 96, 81–89. [Google Scholar] [CrossRef]
- Karaguzel, U.; Bakkal, M.; Budak, E. Mechanical and thermal modeling of orthogonal turn-milling operation. Procedia CIRP 2017, 58, 287–292. [Google Scholar] [CrossRef]
- Ghosh, D.; Kingstedt, O.T.; Ravichandran, G. Plastic work to heat conversion during high-strain rate deformation of Mg and Mg alloy. Metall. Mater. Trans. A 2017, 48, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Tang, J.; Ding, H.; Liu, A. An accurate transient model for temperature fluctuation on localized shear band in serrated chip formation. Int. J. Mech. Sci. 2021, 204, 106588. [Google Scholar] [CrossRef]
AMS-6414 | C | Mn | Cr | Ni | Mo | Cu | Si | P | S | Fe |
---|---|---|---|---|---|---|---|---|---|---|
Chemical compositions (%) | 0.4 | 0.7 | 0.76 | 1.76 | 0.24 | 0.1 | 0.27 | 0.004 | 0.001 | Balance |
ρw (kg/m3) | Kw (W/m°C) | Cw (J/kg°C) | Tm (°C) | ρt (kg/m3) | Kt (W/m°C) | Ct (J/kg°C) | ||||
Physical properties | 7850 | 44.5 | 475 | 1427 | 14320 | 68.1 | 280 | |||
A | B | C | n | m | έ0 | T0 | Tm | |||
J-C Constant | 792 | 510 | 0.014 | 0.26 | 1.03 | 0.001 | 25 | 1520 |
Level | V (m/min) | f (mm/rev) | rβ (mm) | α (deg) | γ (deg) |
---|---|---|---|---|---|
1 | 40 | 0.075 | 0.03 | 0 | 3 |
2 | 60 | 0.105 | 0.04 | 4 | 7 |
3 | 80 | 0.135 | 0.05 | 8 | 11 |
4 | 100 | 0.165 | 0.06 | 12 | 15 |
ANOVA: R-sqr = 99.489%; R-adj = 99.114%; MS Residual = 106.4216 DV | ||||||
---|---|---|---|---|---|---|
Adj-SS | Df | Adj-MS | F-Value | p-Value | P (%) | |
Cutting speed (m/mn) | 270,227.7 | 1 | 270,227.7 | 2539.220 | 0.000000 | 50.39% |
Feed rate (mm/rev) | 381.1 | 1 | 381.1 | 3.581 | 0.077909 | 1.89% |
Nose radius rβ (mm) | 13,828.4 | 1 | 13,828.4 | 129.940 | 0.000000 | 11.39% |
Rake angle α (deg) | 971.2 | 1 | 971.2 | 9.126 | 0.008599 | 3.02% |
Clearance angle γ (deg) | 415.3 | 1 | 415.3 | 3.903 | 0.066908 | 1.98% |
V × f | 469.6 | 1 | 469.6 | 4.412 | 0.052999 | 2.10% |
V × α | 1594.4 | 1 | 1594.4 | 14.982 | 0.001509 | 3.87% |
V × γ | 412.5 | 1 | 412.5 | 3.876 | 0.067750 | 1.97% |
f × α | 287.3 | 1 | 287.3 | 2.700 | 0.121137 | 1.64% |
rβ × α | 205.7 | 1 | 205.7 | 1.933 | 0.184722 | 1.39% |
rβ × γ | 235.4 | 1 | 235.4 | 2.212 | 0.157665 | 1.49% |
Error | 1596.3 | 15 | 106.4 | |||
Total SS | 312,181.2 | 26 |
Test Number | f (mm/tr) | rβ (mm) | α (deg) | γ (deg) | Observed Values (°C) | Predicted Values (°C) | Analytical Values (°C) |
---|---|---|---|---|---|---|---|
1 | 0.075 | 0.06 | 0 | 3 | 986 | 989.53 | 969 |
2 | 0.075 | 0.03 | 0 | 15 | 954 | 960.27 | 966 |
3 | 0.075 | 0.06 | 12 | 15 | 1013 | 1023.52 | 974 |
4 | 0.165 | 0.03 | 0 | 3 | 920 | 921.01 | 1017 |
5 | 0.165 | 0.06 | 0 | 11 | 956 | 972.47 | 1031 |
6 | 0.165 | 0.06 | 12 | 3 | 1012 | 1020.20 | 1092 |
7 | 0.165 | 0.03 | 12 | 15 | 975 | 976.25 | 1005 |
V (m/min) | f (mm/tr) | rβ (mm) | α (deg) | γ (deg) | Tint (°C) |
---|---|---|---|---|---|
100 | 0.165 | 0.06 | 12 | 15 | 1022.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed-Amine, A.; Mohamed, D.; Abdelhakim, D.; Songmene, V. Predictive Analytical Modeling of Thermo-Mechanical Effects in Orthogonal Machining. Materials 2021, 14, 7876. https://doi.org/10.3390/ma14247876
Mohamed-Amine A, Mohamed D, Abdelhakim D, Songmene V. Predictive Analytical Modeling of Thermo-Mechanical Effects in Orthogonal Machining. Materials. 2021; 14(24):7876. https://doi.org/10.3390/ma14247876
Chicago/Turabian StyleMohamed-Amine, Alliche, Djennane Mohamed, Djebara Abdelhakim, and Victor Songmene. 2021. "Predictive Analytical Modeling of Thermo-Mechanical Effects in Orthogonal Machining" Materials 14, no. 24: 7876. https://doi.org/10.3390/ma14247876
APA StyleMohamed-Amine, A., Mohamed, D., Abdelhakim, D., & Songmene, V. (2021). Predictive Analytical Modeling of Thermo-Mechanical Effects in Orthogonal Machining. Materials, 14(24), 7876. https://doi.org/10.3390/ma14247876