Particle-Bed Binding by Selective Paste Intrusion—Strength and Durability of Printed Fine-Grain Concrete Members
Abstract
:1. Introduction
2. Materials and Methods
2.1. Printing Process
2.2. Materials
2.2.1. Cement Paste
2.2.2. Aggregate
2.3. Methods
2.3.1. Casted Specimens
2.3.2. 3D-Printed Specimens
2.3.3. Determination of the Air Void Content of the REF Specimens in Fresh State
2.3.4. Determination of the Density of Hardened Specimens
2.3.5. Determination of the Air Void Content of 3D-Printed Specimens
2.3.6. Determination of Compressive and Flexural Strength
2.3.7. Determination of the Freeze–Thaw Resistance
2.3.8. Determination of the Carbonation Resistance
2.3.9. Determination of Chloride Penetration Resistance
3. Results and Discussion
3.1. Compressive and Flexural Strength
3.2. Freeze–Thaw Resistance
3.2.1. Scaling
3.2.2. E-Modulus
3.3. Carbonation Resistance
3.4. Chloride Penetration (Migration) Resistance
4. Conclusions
- All results exhibited in almost all cases no dependency on the layer orientation.
- Casted and 3D-printed specimens showed comparable results.
- Maximum compressive strength values up to 78 MPa after 7 d.
- Flexural strength of 1/10 of compressive strength.
- High freeze–thaw resistance.
- No detectable carbonation depth after 182 days of natural CO2 exposure and after 28 days under increased CO2 content of 2 vol %.
- Low rapid chloride migration coefficients, DRCM.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
w/c Ratio | Mini Slump Flow | Density ρP | Yield Stress τ0 | Consistency k | Flow Index n | Thixotropy |
---|---|---|---|---|---|---|
- | mm | kg/m3 | Pa | Pa∙sn | - | Pa/s |
0.30 | 400 | 2090 | 2.7 | 0.12 | 1.26 | 0.42 |
Appendix B
Test Method | Number of Samples 90°/0°/REF | Age at Testing (Begin) | Procedure Acc. to Standard |
---|---|---|---|
- | - | d | - |
Compressive strength | 10/14/35 | 7 | DIN EN 12390-3:2009-07 [41]/ DIN EN 196-1:2016-11 [42] |
Flexural strength | -/-/15 | 7 | DIN EN 196-1:2016-11 [42] |
Freeze–thaw resistance (CIF) | 2/2/5 | 35 (after 7 d pre-storage) | DIN CEN/TS 12390-9:2017-05 (DIN SPEC 91167) [43] |
Freeze–thaw resistance (CDF) | 2/2/5 | 35 (after 7 d pre-storage) | DIN CEN/TS 12390-9:2017-05 (DIN SPEC 91167) [43] |
Carbonation resistance (ambient conditions) | 3/3/3 (90° and 0° were tested on the same sample) | 182 | DIN CEN/TS 12390-10:2007 [45] |
Carbonation resistance (2 vol % CO2) | 3/3/3 (90° and 0° were tested on the same sample) | 28 | - |
Chloride penetration resistance | 3/3/6 | 28 | German guideline BAW Code of Practice—Resistance of Concrete to Chloride Penetration [51,52,53] |
References
- Hull, C.W. Apparatus for Production of Three-Dimensional Objects by Stereolithography. U.S. Patent 06/638,905, 8 August 1984. [Google Scholar]
- Sachs, E.M.; Haggerty, J.S.; Cima, M.J.; Williams, P.A. Three-Dimensional Printing Techniques. U.S. Patent 07/447,677, 8 December 1989. [Google Scholar]
- Yoo, J.; Cima, M.; Khanuja, S.; Sachs, E. Structural Ceramic Components by 3D Printing. In Proceedings of theSolid Freeform Fabrication Symposium, Austin, TX, USA, 9–11 August 1993; pp. 40–50. [Google Scholar]
- Deckard, C.R. Method and Apparatus for Producing Parts by Selective Sintering. U.S. Patent 06/920,580, 17 August 1986. [Google Scholar]
- Gebhardt, A. Additive Fertigungsverfahren. Additive Manufacturing und 3D-Drucken für Prototyping—Tooling—Produktion, 5th ed.; Hanser: Munich, Germany, 2016; ISBN 978-3-446-44539-0. [Google Scholar]
- Pegna, J. Application of Cementitious Bulk materials to Site Processed Solid Freeform Construction. In Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, USA, 3–5 August 1995. [Google Scholar]
- Pegna, J. Exploratory investigation of solid freeform construction. Autom. Constr. 1997, 5, 427–437. [Google Scholar] [CrossRef]
- Buswell, R.A.; da Silva, W.L.; Bos, F.; Schipper, H.; Lowke, D.; Hack, N.; Kloft, H.; Mechtcherine, V.; Wangler, T.; Roussel, N. A process classification framework for defining and describing Digital Fabrication with Concrete. Cem. Concr. Res. 2020, 134, 106068. [Google Scholar] [CrossRef]
- Lowke, D.; Dini, E.; Perrot, A.; Weger, D.; Gehlen, C.; Dillenburger, B. Particle-bed 3D printing in concrete construction—Possibilities and challenges. Cem. Concr. Res. 2018, 112, 50–65. [Google Scholar] [CrossRef]
- Lowke, D.; Weger, D.; Henke, K.; Talke, D.; Winter, S.; Gehlen, C. 3D-Drucken von Betonbauteilen durch Selektives Binden mit Calciumsilikatbasierten Zementen—Erste Ergebnisse zu Beton—Technologischen und Verfahrenstechnischen Einflüssen. In Proceedings of the Tagungsbericht 19 Internationale Baustofftagung, Weimar, Germany, 16–18 September 2015; Ludwig, H.-M., Ed.; Bauhaus University Weimar: Weimar, Germany, 2015. ISBN 978-3-00-050225-5. [Google Scholar]
- Fromm, A. 3-D-Printing Zementgebundender Formteile. Grundlagen, Entwicklung und Verwendung; Kassel University Press GmbH: Kassel, Germany, 2014; ISBN 978-3-86219-790-3. [Google Scholar]
- Zuo, W.; Dong, C.; Keita, E.; Roussel, N. Penetration Study of Liquid in Powder Bed for 3D Powder-Bed Printing. In Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication, Eindhoven, The Netherlands, 6–9 July 2020; Springer: Cham, Switzerland, 2020; pp. 379–386. [Google Scholar] [CrossRef]
- Lowke, D.; Talke, D.; Dressler, I.; Weger, D.; Gehlen, C.; Ostertag, C.; Rael, R. Particle bed 3D printing by selective cement activation—Applications, material and process technology. Cem. Concr. Res. 2020, 134, 106077. [Google Scholar] [CrossRef]
- Talke, D.; Henke, K.; Weger, D. Selective Cement Activation (SCA)—New possibilities for additive manufacturing in construction. In Proceedings of the Form and Force 2019 IASS 60th Anniversary Symposium, Barcelona, Spain, 7–10 October 2019. [Google Scholar]
- Xia, M.; Nematollahi, B.; Sanjayan, J. Shape Accuracy Evaluation of Geopolymer Specimens Made Using Particle-Bed 3D Printing. In Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication, Eindhoven, The Netherlands, 6–9 July 2020; Springer: Cham, Switzerland, 2020; pp. 1011–1019. [Google Scholar] [CrossRef]
- Shakor, P.; Nejadi, S.; Paul, G.; Sanjayan, J. Dimensional accuracy, flowability, wettability, and porosity in inkjet 3DP for gypsum and cement mortar materials. Autom. Constr. 2020, 110, 102964. [Google Scholar] [CrossRef]
- Cesaretti, G.; Dini, E.; de Kestelier, X.; Colla, V.; Pambaguian, L. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronaut. 2014, 93, 430–450. [Google Scholar] [CrossRef]
- Weger, D.; Kim, H.; Talke, D.; Henke, K.; Kränkel, T.; Gehlen, C. Lightweight Concrete 3D Printing by Selective Cement Activation—Investigation of Thermal Conductivity, Strength and Water Distribution. In Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication, Eindhoven, The Netherlands, 6–9 July 2020; Springer: Cham, Switzerland, 2020; pp. 162–171. [Google Scholar] [CrossRef]
- Shakor, P.; Sanjayan, J.; Nazari, A.; Nejadi, S. Modified 3D printed powder to cement-based material and mechanical properties of cement scaffold used in 3D printing. Constr. Build. Mater. 2017, 138, 398–409. [Google Scholar] [CrossRef]
- Shakor, P.; Nejadi, S.; Paul, G.; Sanjayan, J.; Nazari, A. Mechanical Properties of Cement-Based Materials and Effect of Elevated Temperature on 3-D Printed Mortar Specimens in Inkjet 3-D Printing. ACI Mater. J. 2019, 116. [Google Scholar] [CrossRef]
- Xia, M.; Sanjayan, J. Method of formulating geopolymer for 3D printing for construction applications. Mater. Des. 2016, 110, 382–390. [Google Scholar] [CrossRef]
- Xia, M.; Nematollahi, B.; Sanjayan, J. Influence of Binder Saturation Level on Compressive Strength and Dimensional Accuracy of Powder-Based 3D Printed Geopolymer. Mater. Sci. Forum 2018, 939, 177–183. [Google Scholar] [CrossRef]
- Xia, M.; Sanjayan, J. Methods of enhancing strength of geopolymer produced from powder-based 3D printing process. Mater. Lett. 2018, 227, 281–283. [Google Scholar] [CrossRef]
- Nematollahi, B.; Xia, M.; Sanjayan, J. Post-processing Methods to Improve Strength of Particle-Bed 3D Printed Geopolymer for Digital Construction Applications. Front. Mater. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Weger, D.; Lowke, D.; Gehlen, C. 3D printing of concrete structures using the selective binding method—Effect of concrete technology on contour precision and compressive strength. In Proceedings of the 11th FIB International PhD Symposium in Civil Engineering, Tokyo, Japan, 29–31 August 2016; Maekawa, K., Kasuga, A., Yamazaki, J., Eds.; The University of Tokyo: Tokyo, Japan, 2016; pp. 403–410, ISBN 978-4-9909148-0-6. [Google Scholar]
- Prasittisopin, L.; Pongpaisanseree, K.; Snguanyat, C.; Dini, E. A 3D Printing Cement Mortar for Powder-bed (D-Shape) Machine. In Proceedings of the RILEM 1st International Conference on Concrete and Digital Fabrication, Zurich, Switzerland, 9–12 September 2018. [Google Scholar]
- Weger, D.; Lowke, D.; Gehlen, C.; Talke, D.; Henke, K. Additive manufacturing of concrete elements using selective cement paste intrusion—Effect of layer orientation on strength and durability. In Proceedings of the RILEM 1st International Conference on Concrete and Digital Fabrication, Zurich, Switzerland, 9–12 September 2018. [Google Scholar]
- Weger, D.; Gehlen, C.; Lowke, D. Additive Fertigung von Betonbauteilen durch selektive Zementleim-Intrusion. In Proceedings of the IBAUSIL 2018, Weimar, Germany, 12–14 September 2018. [Google Scholar]
- Weger, D. Additive Manufacturing of Concrete Structures by Selective Paste Intrusion—SPI/Additive Fertigung von Betonstrukturen mit der Selective Paste Intrusion—SPI. Ph.D. Thesis, Technical University of Munich, Munich, Germany, 2020. (In Germany). [Google Scholar]
- Weger, D.; Baier, D.; Straßer, A.; Prottung, S.; Kränkel, T.; Bachmann, A.; Gehlen, C.; Zäh, M. Reinforced Particle-Bed Printing by Combination of the Selective Paste Intrusion Method with Wire and Arc Additive Manufacturing—A First Feasibility Study. In Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication, Eindhoven, The Netherlands, 6–9 July 2020; Springer: Cham, Switzerland, 2020; pp. 978–987. [Google Scholar] [CrossRef]
- Weger, D.; Lowke, D.; Gehlen, C. 3D Printing of Concrete Structures with Calcium Silicate based Cements using the Selective Binding Method—Effects of Concrete Technology on Penetration Depth of Cement Paste. In Proceedings of the Hipermat 2016—4th International Symposium on Ultra-High Performance Concrete and High Performance Construction Materials, Kassel, Germany, 9–11 March 2016. [Google Scholar]
- Pierre, A.; Weger, D.; Perrot, A.; Lowke, D. Penetration of cement pastes into sand packings during 3D printing: Analytical and experimental study. Mater. Struct. 2018, 51, 22. [Google Scholar] [CrossRef]
- Pierre, A.; Weger, D.; Perrot, A.; Lowke, D. 2D Numerical Modelling of Particle-Bed 3D Printing by Selective Paste Intrusion. In Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication, Eindhoven, The Netherlands, 6–9 July 2020; Springer: Cham, Switzerland, 2020; pp. 342–352. [Google Scholar] [CrossRef]
- Pierre, A.; Weger, D.; Perrot, A.; Lowke, D. Additive Manufacturing of Cementitious Materials by Selective Paste Intrusion: Numerical Modeling of the Flow Using a 2D Axisymmetric Phase Field Method. Materials 2020, 13, 5024. [Google Scholar] [CrossRef]
- Weger, D.; Pierre, A.; Perrot, A.; Kränkel, T.; Lowke, D.; Gehlen, C. Penetration of Cement Pastes into Particle-Beds: A Comparison of Penetration Models. Materials 2021, 14, 389. [Google Scholar] [CrossRef]
- Weger, D.; Talke, D.; Lowe, D.; Henke, K. 3D-Betondruck, Variante ’Paste Intrusion’. Herstellung eines mit inneren Streben ausgesteiften Rohres. Gefördert durch Informationszentrum Beton GmbH; ITSZ-Medienzentrum Technische Universität München: Munich, Germany, 2017. [Google Scholar]
- Weger, D.; Gehlen, C.; Lowke, D. 3D-Betondrucken—Stand der Forschung an der TUM. In Proceedings of the 59th Forschungskolloquium des DAfStb, Munich, Germany, 11–12 October 2018. [Google Scholar]
- Straßer, A.; Weger, D. Prozesstechnische Optimierung der additiven Fertigungsmethode Selective Cement Paste Intrusion durch Einsatz von Zusatzmitteln. Wiss. Kurzber. CBM 2019, 46, 1–2. [Google Scholar]
- Deutsches Institut für Normung E.V. DIN EN 1015-7:1998. Prüfverfahren für Mörtel für Mauerwerk—Teil 7: Bestimmung des Luftgehaltes von Frischmörtel; Beuth Verlag GmbH: Berlin, Germany, 1998. [Google Scholar]
- Deutsches Institut für Normung E.V. DIN EN 12390-7:2009. Prüfung von Festbeton—Teil 7: Rohdichte von Festbeton; Beuth Verlag GmbH: Berlin, Germany, 2009. [Google Scholar]
- Deutsches Institut für Normung E.V. DIN EN 12390-3:2009-07. Compressive Strength of Test Speciments—Druckfestigkeit von Probekörpern, July 2009; Beuth Verlag GmbH: Berlin Germany, 2009. [Google Scholar]
- Deutsches Institut für Normung E.V. DIN EN 196-1:2016. Prüfverfahren für Zement—Teil 1: Bestimmung der Festigkeit; Deutsche Fassung EN 196-1:2016/Methods of testing cement—Part 1: Determination of strength, German version EN 196-1:2016; Beuth Verlag GmbH: Berlin, Germany, 2016. [Google Scholar]
- Comite Europeen de Normalisation. CEN/TS 12390-9:2016 (DIN SPEC 91167)—Testing Hardened Concrete—Part 9: Freeze-thaw Resistance with De-Icing Salts—Scaling Prüfung von Festbeton—Teil 9: Frost-und Frost-Tausalz-Widerstand—Abwitterung; Deutsche Fassung DIN CEN/TS 12390-9:2017-05, ics 91.100.30; Comite Europeen de Normalisation: Brussels, Belgium.
- Bundesanstalt für Wasserbau. BAWMerkblatt: Frostprüfung von Beton (MFB). Ausgabe. 2012. Available online: https://izw.baw.de/publikationen/merkblaetter/0/BAWMerkblatt_Frostpruefung_Beton_MFB_2012.pdf (accessed on 30 May 2018).
- Deutsches Institut für Normung E.V. DIN CEN/TS 12390-10:2007-12. Prüfung von Festbeton—Teil 10: Bestimmung des relativen Karbonatisierungswiderstandes von Beton; Deutsche Fassung CEN/TS 12390-10:2007; Beuth: Berlin, Germany, 2007. [Google Scholar]
- Bier, T. Influence of Type of Cement and Curing on Carbonation Progress and Pore Structure of Hydrated Cement Pastes. MRS Proc. 1986, 85, 93. [Google Scholar] [CrossRef]
- Castellote, M.; Fernandez, L.; Andrade, C.; Alonso, C. Chemical changes and phase analysis of OPC pastes carbonated at different CO2 concentrations. Mater. Struct. 2008, 42, 515–525. [Google Scholar] [CrossRef]
- Thiel, C.; Beddoe, R.; Lowke, D.; Gehlen, C. Accelerated carbonation: Changes in water transport, porosity and phases of mortar due to different CO2 pressures. In Proceedings of the 10th FIB International PhD Symposium in Civil Engineering, Quebec, QC, Canada, 21–23 July 2014; pp. 217–221. [Google Scholar]
- Thiel, C.; Beddoe, R.; Lowke, D.; Gehlen, C. Investigating the role of moisture on concrete carbonation using single-sided 1H-NMR. In Proceedings of the PRO112: International RILEM Conference on Materials, Systems and Structures in Civil Engineering Conference, Seg-ment on Moisture in Materials and Structures, Lyngby, Denmark, 22–24 August 2016; Hansen, K.K., Rode, C., Nilsson, K.-O., Eds.; RILEM Publications SARL: Paris, France, 2016; pp. 261–268. [Google Scholar]
- Thiel, C.; Schön, A.; Gehlen, C. Einfluss der Co2-Permeation auf die Carbonatisierung Zementgebundener Baustoffe. Tagungsband. In Proceedings of the IBAUSIL 20th Internationale Baustofftagung, Weimar, Germany, 12–14 September 2018; pp. 153–161, ISBN 978-3-00-059950-7. [Google Scholar]
- Bundesanstalt für Wasserbau. BAW Code of Practice—Resistance of Concrete to Chloride Penetration (MCL); Bundesanstalt für Wasserbau: Karlsruhe, Germany, 2012. [Google Scholar]
- Bundesanstalt für Wasserbau. BAWMerkblatt Dauerhaftigkeitsbemessung und—Bewertung von Stahlbetonbauwerken bei Carbona—Tisierung und Chlorideinwirkung (MDCC); Bundesanstalt für Wasserbau: Karlsruhe, Germany, 2012. [Google Scholar]
- Bundesanstalt für Wasserbau. BAWMerkblatt Dauerhaftigkeitsbemessung und-bewertung von Stahlbetonbauwerken bei Carbona-Tisierung und Chlorideinwirkung (MDCC); Bundesanstalt für Wasserbau: Karlsruhe, Germany, 2017. [Google Scholar]
- Dini Engineering. D-shape 3D-Printer DS 12 × 12 × 10. 2019. Available online: https://www.d-shape.com/wp-content/uploads/2018/10/DS12x12x10.pdf (accessed on 14 December 2020).
- CEN—European Committee for Standardization. EN 206:2013+A1:2016. Concrete—Specification, performance, production and conformity; CEN—European Committee for Standardization: Brussels, Belgium, 2013. [Google Scholar]
- Rahimi, A. Semiprobabilistisches Nachweiskonzept zur Dauerhaftigkeitsbemessung und—Bewertung von Stahlbetonbauteilen unter Chlorideinwirkung; Beuth Verlag: Berlin, Germany, 2017; ISBN 9783410657750. [Google Scholar]
- Krishnakumar, K.; Kathirvel, P.; Sangoju, B. Evaluation of Chloride Penetration in OPC Concrete by Silver Nitrate Solution Spray Method. Int. J. Chem. Tech Res. 2014, 6, 974–4290. [Google Scholar]
- Gehlen, C. Probabilistische Lebensdauerbemessung von Stahlbetonbauwerken. Zuverlässigkeitsbetrachtungen zur Wirksamen Vermeidung von Bewehrungskorrosion; Beuth Verlag: Berlin, Germany, 2000; ISBN 9783410657101. [Google Scholar]
- Spiesz, P.R.; Hunger, M. Towards a more common use of Ultra-High Performance Concrete (UHPC)—Development of UHPC for ready-mix and prefabrication concrete plants. In Proceedings of the 11th High Performance Concrete conference, Tromso, Norway, 6–8 March 2017. [Google Scholar]
- Scheydt, J.C. Mechanismen der Korrosion bei Ultrahochfestem Beton; KIT Scientific Publishing: Karlsruhe, Germany, 2014; ISBN 978-3-7315-0113-8. [Google Scholar]
- de Larrard, F.; Ferraris, C.F.; Sedran, T. Fresh concrete: A Herschel-Bulkley material. Mater. Struct. 1998, 31, 494–498. [Google Scholar] [CrossRef]
- Steffe, J.F. Rheological Methods in Food Process Engineering, 2nd ed.; Freeman Press: Webster City, IA, USA, 1996. [Google Scholar]
- Papo, A. Rheological models for cement pastes. Mater. Struct. 1988, 21, 41–46. [Google Scholar] [CrossRef]
- Herschel, W.H.; Bulkley, R. Konsistenzmessungen von Gummi-Benzollösungen. Colloid Polym. Sci. 1926, 39, 291–300. [Google Scholar] [CrossRef]
- Mezger, T.G. Das Rheologie Handbuch, 4th ed.; Vincentz Network: Hannover, Germany, 2012; ISBN 9783866308251. [Google Scholar]
- Lowke, D. Sedimentationsverhalten und Robustheit Selbstverdichtender Betone; Beuth Verlag: Berlin, Germany, 2015; ISBN 9783410652700. [Google Scholar]
Series | Carbonation Depth for Atmospheric CO2 Content (Age 182 d) | Carbonation Depth for 2 vol % CO2 Content (Age 56 d) |
---|---|---|
- | mm | mm |
3D printed (0°) | 0.0 (none of the three test series exhibited visual carbonation) | |
3D printed (90°) REF |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weger, D.; Gehlen, C. Particle-Bed Binding by Selective Paste Intrusion—Strength and Durability of Printed Fine-Grain Concrete Members. Materials 2021, 14, 586. https://doi.org/10.3390/ma14030586
Weger D, Gehlen C. Particle-Bed Binding by Selective Paste Intrusion—Strength and Durability of Printed Fine-Grain Concrete Members. Materials. 2021; 14(3):586. https://doi.org/10.3390/ma14030586
Chicago/Turabian StyleWeger, Daniel, and Christoph Gehlen. 2021. "Particle-Bed Binding by Selective Paste Intrusion—Strength and Durability of Printed Fine-Grain Concrete Members" Materials 14, no. 3: 586. https://doi.org/10.3390/ma14030586
APA StyleWeger, D., & Gehlen, C. (2021). Particle-Bed Binding by Selective Paste Intrusion—Strength and Durability of Printed Fine-Grain Concrete Members. Materials, 14(3), 586. https://doi.org/10.3390/ma14030586