Composite Nitride Nanoceramics in the System Titanium Nitride (TiN)-Aluminum Nitride (AlN) through High Pressure and High Temperature Sintering of Synthesis-Mixed Nanocrystalline Powders †
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of Metal Amide-Imide Precursors in the Mixed Bimetallic Tetrakis/tris(dimethylamide) System │Ti[N(CH3)2]4/{Al[N(CH3)2]3}2│/NH3, Atomic Ratio Ti:Al = 1:1 and Individual Reference Systems of │Ti[N(CH3)2]3}2│/NH3 and │{Al[N(CH3)2]3}2│/NH3
2.1.1. Preparation of Mixed Precursor 1 via Reaction at Room Temperature (RT) and Short Equilibration Time
2.1.2. Preparation of Mixed Precursor 2 via 3-h Reflux in Hexane Solution
2.1.3. Preparation of Reference Pure Ti- and Al-Precursors
2.2. Nitridation Towards Nanopowders
2.3. High Pressure and High Temperature Sintering
2.4. Nitride/Ceramics Sample Labeling
2.5. Characterization
3. Results and Discussion
3.1. Nitride Synthesis
3.2. No-Additive High Pressure and High Temperature (HP-HT) Powder Sintering
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ashraf, I.; Rizwan, S.; Iqbal, M. A comprehensive review on the synthesis and energy applications of nano-structured metal nitrides. Front. Mater. 2020, 7, 181. [Google Scholar] [CrossRef]
- Dongil, A.B. Recent progress on transition metal nitrides nanoparticles as heterogeneous catalysts. Nanomaterials 2019, 9, 1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jena, D.; Page, R.; Casamento, J.; Dang, P.; Singhal, J.; Zhang, Z.; Wright, J.; Khalsa, G.; Cho, Y.; Xing, H.G. The new nitrides: Layered, ferroelectric, magnetic, metallic and superconducting nitrides to boost the GaN photonics and electronics eco-system. Jpn. J. Appl. Phys. 2019, 58, SC0801. [Google Scholar] [CrossRef]
- Zakutayev, A. Design of nitride semiconductors for solar energy conversion. J. Mater. Chem. A 2016, 4, 6742–6754. [Google Scholar] [CrossRef]
- Zhang, Z.; Chai, C.; Zhang, W.; Song, Y.; Kong, L.; Yang, Y. First-principles study on III-nitride polymorphs: AlN/GaN/InN in the Pmn21 phase. Materials 2020, 13, 3212. [Google Scholar] [CrossRef]
- Watson, I.M. Metal organic vapour phase epitaxy of AlN, GaN, InN and their alloys: A key chemical technology for advanced device applications. Coordin. Chem. Rev. 2013, 257, 2120–2141. [Google Scholar] [CrossRef]
- Van Schilfgaarde, M.; Sher, A.; Chen, A.B. Theory of AlN, GaN, InN and their alloys. J. Cryst. Growth 1997, 178, 8–31. [Google Scholar] [CrossRef]
- Tsareva, A.M.; Leonov, A.V.; Lysenkov, A.S.; Sevostyanov, M.A. Methods of producing ceramic on the basis of metal nitrides (Review). Glass Ceram. 2019, 76, 63–67. [Google Scholar] [CrossRef]
- Chernyavskii, A.S. Synthesis of ceramics based on titanium, zirconium, and hafnium nitrides. Inorg. Mater. 2019, 55, 1303–1327. [Google Scholar] [CrossRef]
- Tareen, A.K.; Priyanga, G.S.; Behara, S.; Thomas, T.; Yang, M.H. Mixed ternary transition metal nitrides: A comprehensive review of synthesis, electronic structure, and properties of engineering relevance. Prog. Solid State Chem. 2019, 53, 1–26. [Google Scholar] [CrossRef]
- Höhn, P.; Niewa, R. Nitrides of non-main group elements. Handb. Solid State Chem. 2017, 1, 251–359. [Google Scholar]
- Sun, W.H.; Bartel, C.J.; Arca, E.; Bauers, S.R.; Matthews, B.; Orvananos, B.; Chen, B.R.; Toney, M.F.; Schelhas, L.T.; Tumas, W.; et al. A map of the inorganic ternary metal nitrides. Nature Mater. 2019, 18, 732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levason, B.; Hector, A.L. Chemistry and applications of metal nitrides. Coordin. Chem. Rev. 2013, 257, 1945–2142, (entire issue). [Google Scholar]
- Iwata, A.; Akedo, J. Hexagonal to cubic crystal structure transformation during aerosol deposition of aluminum nitride. J. Cryst. Growth 2005, 275, e1269–e1273. [Google Scholar] [CrossRef]
- Nersisyan, H.H.; Yoo, B.U.; Lee, K.H.; Lee, J.H. A thermochemical pathway for controlled synthesis of AlN nanoparticles in non-isothermal conditions. Thermochim. Acta 2015, 604, 77–82. [Google Scholar] [CrossRef]
- Sung, M.C.; Wang, Y.F.; Chen, S.C.; Tsai, C.H. Two-stage plasma thermal nitridation processes for the production of aluminum nitride powders from aluminum powders. Materials 2019, 12, 359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, W.W.; Liu, D.; Zhang, J.; Liu, B.B.; Zhu, P.W.; Cui, T.; Cui, Q.L.; Zou, G.T. AlN nanostructures: Tunable architectures and optical properties. Chem. Commun. 2009, 1365–1367. [Google Scholar] [CrossRef] [Green Version]
- Janik, J.F.; Wells, R.L.; Coffer, J.L.; St. John, J.V.; Pennington, W.T.; Schimek, G.L. Nanocrystalline aluminum nitride and aluminum/gallium nitride nanocomposites via transamination of [M(NMe2)3]2, M = Al, Al/Ga(1/1). Chem. Mater. 1998, 10, 1613–1622. [Google Scholar] [CrossRef]
- Patsalas, P.; Kalfagiannis, N.; Kassavetis, S. Optical properties and plasmonic performance of titanium nitride. Materials 2015, 8, 3128. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Jiang, W.; Chen, L.; Yang, M.; Zhu, H. Consolidation of nano-sized TiN powders by spark plasma sintering. J. Am. Ceram. Soc. 2006, 89, 2364–2366. [Google Scholar] [CrossRef]
- Lengauer, W. Properties of bulk δ-TiN1−x prepared by nitrogen diffusion into titanium metal. J. Alloys Compd. 1992, 186, 293–307. [Google Scholar] [CrossRef]
- Giardini, A.; Marotta, V.; Orlando, S.; Parisi, G.P. Titanium nitride thin films deposited by reactive pulsed-laser ablation in RF plasma. Surf. Coat. Tech. 2002, 151–152, 316–319. [Google Scholar] [CrossRef]
- Cheng, H.E.; Wen, Y.W. Correlation between process parameters, microstructure and hardness of titanium nitride films by chemical vapor deposition. Surf. Coat. Technol. 2004, 179, 103–109. [Google Scholar] [CrossRef]
- Gea, W.Y.; Changa, Z.; Siddiquea, A.; Shia, B.; Liu, C. Large-area fabrication of TiN thin films with photothermal effect via PECVD. Ceram. Int. 2020, 46, 7355–7361. [Google Scholar] [CrossRef]
- Liu, Y.J.; Wang, Y.; Zhang, Y.; You, Z.X.; Lv, X.W. Mechanism on reduction and nitridation of micrometer-sized titania with ammonia gas. J. Am. Ceram. Soc. 2020, 103, 3905–3916. [Google Scholar] [CrossRef]
- Alhussain, H.; Mise, T.; Matsuo, Y.; Kiyono, H.; Nishikiori, K.; Akashi, T. Influence of ammonia gas exposure on microstructure of nanocrystalline titanium nitride powder synthesized from titanium dioxide. J. Ceram. Soc. Jpn. 2019, 127, 824–829. [Google Scholar] [CrossRef]
- Drygas, M.; Czosnek, C.; Paine, R.T.; Janik, J.F. Two-stage aerosol synthesis of titanium nitride TiN and titanium oxynitride TiOxNy nanopowders of spherical particle morphology. Chem. Mater. 2006, 18, 3122–3129. [Google Scholar] [CrossRef]
- Schuster, J.C.; Bauer, J. The ternary system titanium-aluminum-nitrogen. J. Solid State Chem. 1984, 53, 260–265. [Google Scholar] [CrossRef]
- Chen, Q.; Sundman, B. Thermodynamic assessment of the Ti-AI-N system. J. Phase Equilib. 1998, 19, 146. [Google Scholar] [CrossRef]
- Han, Y.S.; Kalmykov, K.B.; Dunaev, S.F.; Zaitsev, A.I. Solid-state phase equilibria in the titanium-aluminum-nitrogen system. J. Phase Equilib. Diff. 2004, 25, 427–436. [Google Scholar] [CrossRef]
- Endler, I.; Hohn, M.; Herrmann, M.; Pitonak, R.; Ruppi, S.; Schneider, M.; van den Berg, H.; Westphal, H. Novel aluminum-rich Ti1−xAlxN coatings by LPCVD. Surf. Coat. Technol. 2008, 203, 530–533. [Google Scholar] [CrossRef]
- Waters, C.K.; Yarmolenko, S.; Sankar, J.; Neralla, S.; Kelkar, A.D. Synthesis, optimization, and characterization of AlN/TiN thin film heterostructures. In Nanoengineering of Structural, Functional and Smart Materials; CRC Press: Boca Raton, FL, USA, 2005; Chapter 20. [Google Scholar]
- Uny, F.; Blanquet, E.; Schuster, F.; Sanchette, F. Ti-Al-N-based hard coatings: Thermodynamical background, CVD deposition, and properties. A review. In Coatings and Thin Film Technologies; IntechOpen: London, UK, 2018. [Google Scholar]
- Liu, S.; Chang, K.; Mraz, S.; Chen, X.; Hans, M.; Music, D.; Primetzhofer, D.; Schneider, J.M. Modeling of metastable phase formation for sputtered Ti1-xAlxN thin films. Acta Mater. 2019, 165, 615–625. [Google Scholar] [CrossRef]
- Krylov, I.; Qi, Y.S.; Korchnoy, V.; Weinfeld, K.; Eizenberg, M.; Yalon, E. Zero temperature coefficient of resistance in back-end-of-the-line compatible titanium aluminum nitride films by atomic layer deposition. Appl. Phys. Lett. 2020, 117, 041902. [Google Scholar] [CrossRef]
- Rogstrom, L.; Ullbrand, J.; Almer, J.; Hultman, L.; Jansson, B.; Oden, M. Strain evolution during spinodal decomposition of TiAlN thin films. Thin Solid Films 2012, 520, 5542–5549. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, T.; Teranishi, Y.; Morikawa, K.; Komiya, H.; Watanabe, T.; Nagasaka, H.; Yang, M. Impact of pulse duration in high power impulse magnetron sputtering on the low-temperature growth of wurtzite phase (Ti,Al)N films with high hardness. Thin Solid Films 2015, 581, 39–47. [Google Scholar] [CrossRef]
- Du, R.X.; Okamura, H.; Watanabe, R.; Kawasaki, A. Characterization of TiN-AlN composites prepared through mechanical alloying and followed by pressure sintering. Mater. Trans. 2004, 45, 2669–2672. [Google Scholar] [CrossRef]
- Mosina, T.V. Contact strength, crack resistance, and abrasive wear of composite materials belonging to the system TiN-AlN. Refract. Ind. Ceram. 2014, 55, 356–359. [Google Scholar] [CrossRef]
- Mosina, T.V. Electric-spark alloying of composite material of the systems TiN-AlN and TiN-AlN-(Ni-Cr) as a method for applying wear-resistant coatings. Refract. Ind. Ceram. 2014, 55, 384–387. [Google Scholar] [CrossRef]
- Kim, W.; Lim, J.W.; Oh, H.S.; Shon, I.J. Mechanical properties of nanostructured TiN-AlN composites rapidly consolidated by pulsed current activated sintering. Ceram. Int. 2014, 40, 2511–2517. [Google Scholar] [CrossRef]
- Zgalat-Lozinskii, O.B. Structure of Si3N4-Y2O3-Al2O3 and TiN-AlN composites consolidated in microwaves (2.45 GHz). Powder Metall. Met. Ceram. 2015, 54, 60–66. [Google Scholar] [CrossRef]
- Lavrenko, V.A.; Shvets, V.A.; Talas, V.N. Corrosion of AlN-TiN ceramics in 3% NaCl solution. Powder Metall. Met. Ceram. 2015, 54, 340–343. [Google Scholar] [CrossRef]
- Ordanyan, S.S.; Krylov, S.O.; Stepanenko, E.K.; Tsielin, U.A. Some special features of structure formation in sintering ultradisperse powders of TiN-AlN compositions. Refractories 1995, 36, 14–16. [Google Scholar] [CrossRef]
- Radajewski, M.; Henschel, S.; Grutzner, S.; Kruger, L.; Schimpf, C.; Chmelik, D.; Rafaja, D. Microstructure and mechanical properties of bulk TiN-AlN composites processed by FAST/SPS. Ceram. Int. 2016, 42, 10220–10227. [Google Scholar] [CrossRef]
- Radune, M.; Zinigrad, M.; Kalabukhov, S.; Sokol, M.; Chumanov, V.I.; Frage, N. Spark plasma sintering of Ti1-xAlxN nano-powders synthesized by high-energy ball milling. Ceram. Int. 2016, 42, 11077–11084. [Google Scholar] [CrossRef]
- He, Z.W.; Wang, M.Z.; Xu, S.; Zhao, Y.C.; Zou, Q. Reactive formation of AlN precipitates and epitaxial interface in TiN1-x-AlN composites. J. Ceram. Soc. Jpn. 2017, 125, 46–49. [Google Scholar] [CrossRef] [Green Version]
- Kudyakova, V.S.; Chukin, A.V.; Dorokhin, M.V.; Kuznetsov, Y.M.; Shishkin, R.A.; Beketov, A.R. Structure, microhardness and thermal conducting properties of the high-pressure high-temperature-treated Al-Ti-N materials. Appl. Phys. A 2019, 125, 123. [Google Scholar] [CrossRef]
- Drygas, M.; Kapusta, K.; Janik, J.F.; Bucko, M.M.; Gierlotka, S.; Stelmakh, S.; Palosz, B.; Olejniczak, C. Novel nanoceramics from in situ made nanocrystalline powders of pure nitrides and their composites in the system aluminum nitride AlN/gallium nitride GaN/aluminum gallium nitride Al0.5Ga0.5N. J. Eur. Ceram. Soc. 2020, 40, 5339–5348. [Google Scholar] [CrossRef]
- Brown, G.M.; Maya, L. Ammonolysis products of the dialkylamides of titanium, zirconium, and niobium as precursors to metal nitrides. J. Am. Ceram. Soc. 1988, 71, 78–82. [Google Scholar] [CrossRef]
- Stelmakh, S.; Grzanka, E.; Gierlotka, S.; Janik, J.F.; Drygas, M.; Lathe, C.; Palosz, B. Compression and thermal expansion of nanocrystalline TiN. Z. Kristallogr. Proc. 2011, 1, 241. [Google Scholar]
- Maya, L. Synthetic approaches to aluminum nitride via pyrolysis of a precursor. Adv. Ceram. Mater. 1986, 1, 150–153. [Google Scholar] [CrossRef]
- Borysiuk, J.; Caban, P.; Strupinski, W.; Gierlotka, S.; Stelmakh, S.; Janik, J.F. TEM investigations of GaN layers grown on silicon and sintered GaN nano-ceramic substrates. Cryst. Res. Technol. 2007, 42, 1291–1296. [Google Scholar] [CrossRef]
- Janik, J.F.; Drygas, M.; Czosnek, C.; Pałosz, B.; Gierlotka, S.; Stelmakh, S.; Grzanka, E.; Kalisz, G.; Swiderska-Sroda, A.; Leszczynski, M.; et al. Sposób Wytwarzania Spieków Azotku Galu GaN (in Polish)-Way to Make Sintered Gallium Nitride GaN. Polish Patent No. 378458, 29 February 2012. [Google Scholar]
- Bradley, D.C.; Gitlitz., M.H. Metallo-organic compounds containing metal-nitrogen bonds. Part VI. Infrared and nuclear magnetic resonance of dialkylamido-derivatives of titanium. J. Chem. Soc. A 1969, 980–984. [Google Scholar] [CrossRef]
- Bellucci, S.; Balasubramanian, C.; Cinque, G.; Marcelli, A.; Cestelli Guidi, M.; Piccinini, M.; Popov, A.; Soldatov, A.; Onorato, P. Characterization of aluminium nitride nanostructures by XANES and FTIR spectroscopies with synchrotron radiation. J. Phys. Condens. Matter 2006, 18, S2095. [Google Scholar] [CrossRef]
- Choi, D.; Kumta, P.A. Nanocrystalline TiN derived by a two-step halide approach for electrochemical capacitors. J. Electrochem. Soc. 2006, 153, A2298. [Google Scholar] [CrossRef]
- Liles, K.J. Mechanical and Physical Properties of Particulate Composites in the System Titanium Nitride-Alumina-Aluminum Nitride; Report of Investigations No. 9272; U.S. Bureau of Mines: Tuscaloosa, AL, USA, 1989.
- Pharr, G.M.; Herbert, E.G.; Gao, Y.F. The indentation size effect: A critical examination of experimental observations and mechanistic interpretations. Annu. Rev. Mater. Res. 2010, 40, 271–292. [Google Scholar] [CrossRef]
- Yonenaga, I. Mechanical stability of power device materials, high temperature hardness of SiC, AlN and GaN. Chem. Sustain. Dev. 2001, 9, 19–21. [Google Scholar]
- Kishore, N.; Nagarajan, V.; Chandiramouli, R. Mechanical and electronic properties under high pressure on ternary AlGaN and InGaN compound—A first-principles perspective. Mater. Res. Express 2019, 6, 015052. [Google Scholar] [CrossRef]
- Xiang, M.; Zhou, Y.F.; Xu, W.T.; Li, X.Q.; Wang, K.; Pan, W. Transparent AlN ceramics sintered from nanopowders produced by the wet chemical method. J. Ceram. Soc. Jpn. 2018, 126, 241–245. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.C.; Lin, Y.T.; Chan, A.; Chang, J.T. High temperature wear behavior of titanium nitride coating deposited using high power impulse magnetron sputtering. Coatings 2019, 9, 555. [Google Scholar] [CrossRef] [Green Version]
- Stone, D.S.; Yoder, K.B.; Sproul, W.D. Hardness and elastic modulus of TiN based on continuous indentation technique and new correlation. J. Vac. Sci. Technol. A 1991, 9, 2543–2547. [Google Scholar] [CrossRef]
- Bartosik, M.; Rumeau, C.; Hahn, R.; Zhang, Z.L.; Mayrhofer, P.H. Fracture toughness and structural evolution in the TiAlN system upon annealing. Sci. Rep. 2017, 7, 16476. [Google Scholar] [CrossRef] [PubMed]
- Sitek, R.; Szustecki, M.; Zrodowski, L.; Wysocki, B.; Jaroszewicz, J.; Wisniewski, P.; Mizer, J. Analysis of microstructure and properties of a Ti–AlN composite produced by selective laser melting. Materials 2020, 13, 2218. [Google Scholar] [CrossRef] [PubMed]
Composite Nanopowders | Nitridation Temperature | Individual Nanopowders | Nitridation Temperature | ||
---|---|---|---|---|---|
800 °C | 1100 °C | 800 °C | 1100 °C | ||
Composite 1 | Pure AlN | ||||
h-AlN: | h-AlN: | ||||
a (Å) | 3.10 | 3.11 | a (Å) | 3.12 | 3.12 |
c (Å) | 5.01 | 4.99 | c (Å) | 5.02 | 5.00 |
Dav (nm) | 5 | 15 | Dav (nm) | 5 | 10 |
c-TiN: | |||||
a (Å) | 4.23 | 4.24 | - | - | - |
Dav (nm) | 6 | 23 | |||
Composite 2 | Pure TiN | ||||
h-AlN: | |||||
a (Å) | 3.08 | 3.11 | |||
c (Å) | 5.02 | 5.00 | - | - | - |
Dav (nm) | 3 | 10 | |||
c-TiN: | c-TiN: | ||||
a (Å) | 4.23 | 4.24 | a (Å) | 4.24 | 4.24 |
Dav (nm) | 4 | 13 | Dav (nm) | 8 | 57 |
Composite Nanoceramics from | Sintering Temperature | Individual Nanoceramics from | Sintering Temperature | ||
---|---|---|---|---|---|
650 °C | 1200 °C | 650 °C | 1200 °C | ||
Composite 1_800 | Pure AlN_800 | ||||
h-AlN: | h-AlN: | ||||
a (Å) | 3.08 | 3.11 | a [Å] | 3.12 | 3.11 * |
c (Å) | 5.07 | 4.99 | c [Å] | 5.08 | 4.98 * |
Dav [nm] | 3 | 18 | Dav [nm] | 5 | >200 * |
c-TiN: | c-TiN: | ||||
a [Å] | 4.23 | 4.24 | a [Å] | - | - |
Dav [nm] | 6 | 16 | Dav [nm] | ||
Composite 1_1100 | Pure AlN_1100 | ||||
h-AlN: | h-AlN: | ||||
a [Å] | 3.11 | 3.12 | a [Å] | 3.12 | 3.12 |
c [Å] | 4.98 | 4.99 | c [Å] | 5.00 | 4.99 |
Dav [nm] | 10 | 21 | Dav [nm] | 7 | 19 |
c-TiN: | c-TiN: | ||||
a [Å] | 4.25 | 4.25 | a [Å] | - | - |
Dav [nm] | 16 | 24 | Dav [nm] | ||
Composite 2_800 | Pure TiN_800 | ||||
h-AlN: | |||||
a [Å] | 3.10 | 3.11 | |||
c [Å] | 5.02 | 5.00 | - | - | - |
Dav [nm] | 2 | 8 | |||
c-TiN: | c-TiN: | ||||
a [Å] | 4.22 | 4.24 | a [Å] | 4.24 | 4.24 |
Dav [nm] | 4 | 8 | Dav [nm] | 8 | 13 |
Composite 2_1100 | Pure TiN_1100 | ||||
h-AlN: | |||||
a [Å] | 3.11 | 3.11 | |||
c [Å] | 4.98 | 4.98 | - | - | - |
Dav [nm] | 10 | 10 | |||
c-TiN: | c-TiN: | ||||
a [Å] | 4.24 | 4.25 | a [Å] | 4.24 | 4.24 |
Dav [nm] | 13 | 13 | Dav [nm] | 21 | 30 |
Composite Nanoceramics from | Sintering Temperature | Individual Nanoceramics from | Sintering Temperature | ||
---|---|---|---|---|---|
650 °C | 1200 °C | 650 °C | 1200 °C | ||
Composite 1_800 | Pure AlN_800 | ||||
dHe (SD) [g/cm3] | 3.25 (0.05) | 3.39 (0.02) | dHe (SD) [g/cm3] | 2.27 (0.03) | 3.32 * |
theor | 77% | 80% | theor | 70% | 102% |
HV (SD) [GPa]: | HV (SD) [GPa]: | ||||
under 100 gf | 13.1 (2.0) | 12.1 (2.2) | under 100 gf | 13.8 (0.6) | n/d |
under 300 gf | 13.1 (1.0) | 14.9 (3.6) | under 300 gf | 12.7 (1.1) | |
Composite 1_1100 | Pure AlN_1100 | ||||
dHe (SD) [g/cm3] | 3.33 (0.03) | 2.95 (0.04) | dHe (SD) [g/cm3] | 2.34 (0.02) | 2.00 (0.03) |
theor | 79% | 70% | theor | 72% | 61% |
HV (SD) [GPa]: | HV (SD) [GPa]: | ||||
under 100 gf | 9.6 (1.9) | 21.9 (2.9) | under 100 gf | 13.9 (0.9) | 18.9 (1.1) |
under 300 gf | 10.8 (1.7) | 19.9 (3.5) | under 300 gf | 12.4 (0.8) | 17.4 (0.8) |
Composite 2_800 | Pure TiN_800 | ||||
dHe (SD) [g/cm3] | 3.23 (0.02) | 2.99 (0.03) | dHe (SD) [g/cm3] | 4.51 (0.06) | 4.39 (0.04) |
theor | 77% | 71% | theor | 86% | 84% |
HV (SD) [GPa]: | HV (SD) [GPa]: | ||||
under 100 gf | 11.0 (1.2) | 13.4 (1.1) | under 100 gf | 15.4 (1.6) | 20.5 (1.7) |
under 300 gf | 11.2 (1.3) | 12.2 (1.5) | under 300 gf | 15.5 (0.8) | 19.7 (1.6) |
Composite 2_1100 | Pure TiN_1100 | ||||
dHe (SD) [g/cm3] | 3.38 (0.04) | 3.47 (0.03) | dHe (SD) [g/cm3] | 4.59 (0.06) | 4.72 (0.05) |
theor | 80% | 82% | theor | 88% | 90% |
HV (SD) [GPa]: | HV (SD) [GPa]: | ||||
under 100 gf | 7.3 (2.0) | 14.8 (0.8) | under 100 gf | 14.3 (1.0) | 18.8 (2.4) |
under 300 gf | 6.7 (1.3) | 11.9 (3.7) | under 300 gf | 13.5 (0.9) | 17.7 (2.2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drygaś, M.; Lejda, K.; Janik, J.F.; Musielak, B.; Gierlotka, S.; Stelmakh, S.; Pałosz, B. Composite Nitride Nanoceramics in the System Titanium Nitride (TiN)-Aluminum Nitride (AlN) through High Pressure and High Temperature Sintering of Synthesis-Mixed Nanocrystalline Powders. Materials 2021, 14, 588. https://doi.org/10.3390/ma14030588
Drygaś M, Lejda K, Janik JF, Musielak B, Gierlotka S, Stelmakh S, Pałosz B. Composite Nitride Nanoceramics in the System Titanium Nitride (TiN)-Aluminum Nitride (AlN) through High Pressure and High Temperature Sintering of Synthesis-Mixed Nanocrystalline Powders. Materials. 2021; 14(3):588. https://doi.org/10.3390/ma14030588
Chicago/Turabian StyleDrygaś, Mariusz, Katarzyna Lejda, Jerzy F. Janik, Bogdan Musielak, Stanisław Gierlotka, Svitlana Stelmakh, and Bogdan Pałosz. 2021. "Composite Nitride Nanoceramics in the System Titanium Nitride (TiN)-Aluminum Nitride (AlN) through High Pressure and High Temperature Sintering of Synthesis-Mixed Nanocrystalline Powders" Materials 14, no. 3: 588. https://doi.org/10.3390/ma14030588
APA StyleDrygaś, M., Lejda, K., Janik, J. F., Musielak, B., Gierlotka, S., Stelmakh, S., & Pałosz, B. (2021). Composite Nitride Nanoceramics in the System Titanium Nitride (TiN)-Aluminum Nitride (AlN) through High Pressure and High Temperature Sintering of Synthesis-Mixed Nanocrystalline Powders. Materials, 14(3), 588. https://doi.org/10.3390/ma14030588