Novel Selenoureas Based on Cinchona Alkaloid Skeleton: Synthesis and Catalytic Investigations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of Compounds
2.2. Catalytic Activity of Tested Compounds
3. Conclusions
4. Materials and Methods
4.1. General Information
4.2. Preparation of Starting Compounds
4.3. General Procedure for Selenourea Synthesis
4.3.1. N-[(8S,9S)-6′-Methoxycinchonan-9-yl]-N′-Phenylselenourea eQN-7a
4.3.2. N-[(8S,9S)-6′-Methoxycinchonan-9-yl]-N′-(4-Methoxyphenyl)Selenourea eQN-7b
4.3.3. N-(4-Fluorophenyl)-N′-[(8S,9S)-6′-Methoxycinchonan-9-yl]Selenourea eQN-7c
4.3.4. N-[(8S,9S)-Cinchonan-9-yl]-N′-(4-Fluorophenyl)Selenourea eCD-7d
4.3.5. N-[4-Fluorophenyl]-N′-[(8S,9S)-10,11-Dihydro-6′-Methoxycinchonan-9-yl]Selenourea eDHQN-7e
4.3.6. N-(4-Fluorophenyl)-N′-[(8R,9R)-6′-Methoxycinchonan-9-yl]Selenourea eQD-7f
4.3.7. N-[4-Fluorophenyl]-N′-[(8R,9R)-10,11-Dihydro-6′-Methoxycinchonan-9-yl]Selenourea eDHQD-7g
4.4. Preparation of N-[(8S,9S)-6′-Methoxycinchonan-9-yl]Formamide 8a
4.5. Preparation of N,N′-bis[(8S,9S)-6′-Metoxycinchonan-9-yl]Selenourea 10a
4.6. Preparation of N-(4-Fluorophenyl)-N′-[(8S,9S)-6′-Methoxycinchonan-9-yl]Thiourea eQN-12a
4.7. General Procedure for the Michael Addition of Nitromethane to Trans-Chalcones
4.8. General Procedure for the Sulfa-Michael Addition of Thioacetic Acid to Trans-Chalcone
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bondi, A. Van der Waals volumes and radii. J. Phys. Chem. 1964, 68, 441–451. [Google Scholar] [CrossRef]
- Bharatam, P.V.; Moudgil, R.; Kaur, D. Electron delocalization in isocyanates, formamides, and ureas: Importance of orbital interactions. J. Phys. Chem. A 2003, 107, 1627–1634. [Google Scholar] [CrossRef]
- Bibelayi, D.; Lundemba, A.S.; Allen, F.H.; Galek, P.T.A.; Pradon, J.; Reilly, A.M.; Groomb, C.R.; Yav, Z.G. Hydrogen bonding at C=Se acceptors in selenoureas,selenoamides and selones. Acta Cryst. 2016, B72, 317–325. [Google Scholar] [CrossRef]
- Merino-Montiel, P.; Maza, S.; Martos, S.; López, Ó.; Maya, I.; Fernández-Bolaños, J.G. Synthesis and antioxidant activity of O-alkyl selenocarbamates, selenoureas and selenohydantoins. Eur. J. Pharm. Sci. 2013, 48, 582–592. [Google Scholar] [CrossRef]
- Ruberte, A.C.; Ramos-Inza, S.; Aydillo, C.; Talavera, I.; Encío, I.; Plano, D.; Sanmartín, C. Novel N,N′-disubstituted acylselenoureas as potential antioxidant and cytotoxic agents. Antioxidants 2020, 9, 55. [Google Scholar] [CrossRef] [Green Version]
- Hussain, R.A.; Badshah, A.; Tahir, M.N.; Hassan, T.U.; Bano, A. Synthesis, chemical characterization, DNA binding, antioxidant, antibacterial, and antifungal activities of ferrocence incorporated selenoureas. J. Biochem. Mol. Toxicol. 2014, 28, 60–68. [Google Scholar] [CrossRef]
- Díaz, M.; de Lucio, H.; Moreno, E.; Espuelas, S.; Aydillo, C.; Jiménez-Ruiz, A.; Toro, M.A.; Gutiérrez, K.J.; Martínez-Merino, V.; Cornejo, A.; et al. Novel urea, thiourea and selenourea derivatives of diselenides: Synthesis and leishmanicidal activity. Antimicrob. Agents Chemoth. 2019, 63, e02200-18. [Google Scholar] [CrossRef] [Green Version]
- Zakrzewski, J.; Krawczyk, M. Synthesis and pesticidal properties of thio and seleno analogs. Phosphorus Sulfur Silicon Relat. Elem. 2009, 184, 1880–1903. [Google Scholar] [CrossRef]
- Sivapriya, K.; Suguna, P.; Banerjee, A.; Saravanan, V.; Rao, D.N.; Chandrasekaran, S. Facile one-pot synthesis of thio and selenourea derivatives: A new class of potent urease inhibitors. Bioorg. Med. Chem. Lett. 2007, 17, 6387–6391. [Google Scholar] [CrossRef]
- Hussain, R.A.; Badshah, A.; Shah, A. Synthesis and biological applications of selenoureas. Appl. Organomet. Chem. 2014, 28, 61–73. [Google Scholar] [CrossRef]
- Alcolea, V.; Plano, D.; Karelia, D.N.; Palop, J.A.; Amin, S.; Sanmartín, C.; Sharma, A.K. Novel seleno- and thio-urea derivatives with potent in vitro activities against several cancer cell lines. Eur. J. Med. Chem. 2016, 113, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Koketsu, M.; Ishihara, H. Synthesis of 1,3-selenazine and 1,3-selenazole and their biological activities. Curr. Org. Chem. 2003, 7, 175–185. [Google Scholar] [CrossRef]
- Ninomiya, M.; Garud, D.R.; Koketsu, M. Selenium-containing heterocycles using selenoamides, selenoureas, selenazadines, and isoselenocyanates. Heterocycles 2010, 81, 2027–2055. [Google Scholar] [CrossRef]
- Casula, A.; Llopis-Lorente, A.; Garau, A.; Isaia, F.; Kubicki, M.; Lippolis, V.; Sancenon, F.; Martinez-Manez, R.; Owczarzak, A.; Santi, C.; et al. A new class of silica-supported chromo-fluorogenic chemosensors for anion recognition based on a selenourea scaffold. Chem. Commun. 2017, 53, 3729–3732. [Google Scholar] [CrossRef] [PubMed]
- Picci, G.; Mocci, R.; Ciancaleoni, G.; Lippolis, V.; Zielińska-Błajet, M.; Caltagirone, C. Bis-selenoureas for anion binding: A 1H NMR and theoretical study. ChemPlusChem. 2020, 85, 1389–1395. [Google Scholar] [CrossRef]
- López, Ó.; Maza, S.; Ulgar, V.; Maya, I.; Fernández-Bolaños, J.G. Synthesis of sugar-derived isoselenocyanates, selenoureas, and selenazoles. Tetrahedron 2009, 65, 2556–2566. [Google Scholar] [CrossRef]
- Chennakrishnareddy, G.; Nagendra, G.; Hemantha, H.P.; Das, U.; Guru Row, T.N.; Sureshbabu, V.; Chennakrishnareddy, G.; Nagendra, G.; Hemantha, H.P.; Das, U.; et al. Isoselenocyanates derived from Boc/Z-amino acids: Synthesis, isolation, characterization, and application to the efficient synthesis of unsymmetrical selenoureas and selenoureidopeptidomimetics. Tetrahedron 2010, 66, 6718–6724. [Google Scholar] [CrossRef]
- Bian, G.; Yang, S.; Huang, H.; Zong, H.; Song, L.; Fan, H.; Sun, X. Chirality sensing of tertiary alcohols by a novel strong hydrogen-bonding donor—selenourea. Chem. Sci. 2016, 7, 932–938. [Google Scholar] [CrossRef] [Green Version]
- Jörres, M.; Schiffers, I.; Atodiresei, I.; Bolm, C. Asymmetric Michael additions of α–nitrocyclohexanone to aryl nitroalkenes catalyzed by natural amino acid-derived bifunctional thioureas. Org. Lett. 2012, 14, 4518–4521. [Google Scholar] [CrossRef]
- Connon, S.J. Asymmetric catalysis with bifunctional cinchona alkaloid-based urea and thiourea organocatalysts. Chem. Commun. 2008, 22, 2499–2510. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.Q.; An, L.Q.; Chen, J.R.; Xiao, W.J. Dual activation in organocatalysis: Design of tunable and bifunctional organocatalysts and their applications in enantioselective reactions. Synlett 2012, 4, 490–508. [Google Scholar] [CrossRef]
- Serdyuk, O.V.; Heckel, C.M.; Tsogoeva, S. Bifunctional primary amine-thioureas in asymmetric organocatalysis. Org. Biomol. Chem. 2013, 11, 7051–7071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parvin, T.; Yadava, R.; Choudhury, L.H. Recent applications of thiourea-based organocatalysts in asymmetric multicomponent reactions (AMCRs). Org. Biomol. Chem. 2020, 18, 5513–5532. [Google Scholar] [CrossRef] [PubMed]
- Steppeler, F.; Iwan, D.; Wojaczyńska, E.; Wojaczyński, J. Chiral thioureas–preparation and significance in asymmetric synthesis and medicinal chemistry. Molecules 2020, 25, 401. [Google Scholar] [CrossRef] [Green Version]
- Song, C.E. (Ed.) Cinchona Alkaloids in Synthesis and Catalysis: Ligands, Immobilization and Organocatalysis; Wiley: Weinheim, Germany, 2009. [Google Scholar]
- Ishihara, H.; Koketsu, M.; Fukuta, Y.; Nada, F. Reaction of lithium aluminum hydride with elemental selenium: its application as a selenating reagent into organic molecules. J. Am. Chem. Soc. 2001, 123, 8408–8409. [Google Scholar] [CrossRef]
- Zhou, Y.; Denk, M.K. Synthesis and reactivity of subvalent compounds. Part 13: Reaction of triethyl orthoformate with amines and selenium—a convenient one-step three-component synthesis for selenoureas. Tetrahedron Lett. 2003, 44, 1295–1299. [Google Scholar] [CrossRef]
- Koketsu, M.; Takakura, N.; Ishihara, H. Efficient synthesis of selenoureas from the corresponding carbodiimides. Synth Commun. 2002, 32, 3075–3079. [Google Scholar] [CrossRef]
- Takikawa, Y.; Watanabe, H.; Sasaki, R.; Shimada, K. Conversion of amides, N,N,N′,N′-tetramethylurea, and esters to the corresponding selenoxo compounds by treatment with bis(trimethylsilyl) selenide and BF3·OEt2. Bull. Chem. Soc. Jpn. 1994, 67, 876–878. [Google Scholar] [CrossRef]
- Fernández-Bolaños, J.G.; López, Ó.; Ulgar, V.; Maya, I.; Fuentes, J. Synthesis of O-unprotected glycosyl selenoureas. A new acces to bicyclic sugar isoureas. Tetrahedron Lett. 2004, 45, 4081–4084. [Google Scholar] [CrossRef]
- Zakrzewski, J.; Huras, B.; Kiełczewska, A. Synthesis of isoselenocyanates. Synthesis 2016, 48, 85–96. [Google Scholar] [CrossRef]
- Zielińska-Błajet, M.; Kucharska, M.; Skarżewski, J. Simple preparation of enantiomeric Michael adducts of thiophenol to chalcones: Easily available new chiral building blocks. Synthesis 2006, 7, 1176–1182. [Google Scholar] [CrossRef]
- Kacprzak, K.; Gierczyk, B. Clickable 9-azido-(9-deoxy)-Cinchona alkaloids: Synthesis and conformation. Tetrahedron Asymmetry 2010, 21, 2740–2745. [Google Scholar] [CrossRef]
- Brunner, H.J.; Bügler, H.J.; Nuber, B. Preparation of 9-amino(9-deoxy)cinchona alkaloids. Tetrahedron Asymmetry 1995, 6, 1699–1702. [Google Scholar] [CrossRef]
- Sharma, S.; Maurya, R.A.; Min, K.I.; Jeong, G.Y.; Kim, D.P. Odorless isocyanide chemistry: An integrated microfluidic system for a multistep reaction sequence. Angew. Chem. Int. Ed. Engl. 2013, 52, 7564–7568. [Google Scholar] [CrossRef] [PubMed]
- Walborsky, H.M.; Niznik, G.E. Synthesis of isonitriles. J. Org. Chem. 1972, 37, 187–190. [Google Scholar] [CrossRef]
- Hofmann, A.W. Ueber eine neue reihe von homologen der cyanwasserstoffsäure. Liebigs Ann. Chem. 1868, 146, 107–119. [Google Scholar] [CrossRef]
- Mąkosza, M.; Wawrzyniewicz, M. Reactions of organic anions. XXIV. Catalytic method for preparation of dichlorocyclopropane derivatives in aqueous medium. Tetrahedron Lett. 1969, 10, 4659–4662. [Google Scholar] [CrossRef]
- Vakulya, B.; Varga, S.; Csámpai, A.; Soós, T. Highly enantioselective conjugate addition of nitromethane to chalcones using bifunctional Cinchona organocatalysts. Org. Lett. 2005, 7, 1967–1969. [Google Scholar] [CrossRef]
- Li, X.; Deng, H.; Zhang, B.; Li, J.; Zhang, L.; Luo, S.; Cheng, J.P. Physical organic study of structure–activity– enantioselectivity relationships in asymmetric bifunctional thiourea catalysis: Hints for the design of new organocatalysts. Chem. Eur. J. 2010, 16, 450–455. [Google Scholar] [CrossRef]
- Jakab, G.; Tancon, C.; Zhang, Z.; Lippert, K.M.; Schreiner, P.R. (Thio)urea organocatalyst equilibrium acidities in DMSO. Org. Lett. 2012, 14, 1724–1727. [Google Scholar] [CrossRef]
- Zhang, Z.; Bao, Z.; Xing, H. N,N′-Bis[3,5-bis(trifluoromethyl)phenyl]thiourea: A privileged motif for catalyst development. Org. Biomol. Chem. 2014, 12, 3151–3162. [Google Scholar] [CrossRef] [PubMed]
- Corey, E.J.; Zhang, F.Y. Enantioselective Michael addition of nitromethane to alpha, beta-enones catalyzed by chiral quaternary ammonium salts. A simple synthesis of (R)-baclofen. Org. Lett. 2000, 2, 4257–4259. [Google Scholar] [CrossRef]
- Manzano, R.; Andrés, J.M.; Álvarez, R.; Muruzábal, M.D.; de Lera, Á.R.; Pedrosa, R. Enantioselective conjugate addition of nitro compounds to α,β-unsaturated ketones: An experimental and computational study. Chem. Eur. J. 2011, 17, 5931–5938. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zu, L.; Wang, J.; Wang, W. Organocatalytic enantioselective Michael addition of thioacetic acid to enones. Tetrahedron Lett. 2006, 47, 3145–3148. [Google Scholar] [CrossRef]
- Barton, D.H.R.; Parekh, S.I.; Tajbakhsh, M.; Theodorakis, E.A.; Chi-Lam, T. A convenient and high yielding procedure for the preparation of isoselenocyanates. Synthesis and reactivity of O-alkylselenocarbamates. Tetrahedron 1994, 50, 639–654. [Google Scholar] [CrossRef]
- Perez-Labrada, K.; Brouard, I.; . Mendez, I.; Rivera, D.G. Multicomponent synthesis of Ugi-type ceramide analogues and neoglycolipids from lipidic isocyanides. J. Org. Chem. 2012, 77, 4660–4670. [Google Scholar] [CrossRef]
Entry | Catalyst | Yield (%) b | ee (%) c | Config. d |
---|---|---|---|---|
1 | eQN-7a | 21 | 81 | R |
2 | eQN-7b | 16 | 70 | R |
3 | eQN-7c | 26 | 95 | R |
4 | eCD-7d | 25 | 91 | R |
5 | eDHQN-7e | 46 | 95 | R |
6 | eQD-7f | 22 | 87 | S |
7 | eDHQD-7g | 36 | 86 | S |
8 | eQN-12a | 24 | 89 | R |
Entry | Catalyst | Yield (%) b | ee (%) c | Config. d |
---|---|---|---|---|
1 | eQN-7a | 92 | 13 | R |
2 | eQN-7b | 90 | 3 | R |
3 | eQN-7c | 93 | 21 | R |
4 | eCD-7d | 95 | 17 | R |
5 | eDHQN-7e | 99 | 21 | R |
6 | eQD-7f | 94 | 14 | R |
7 | eDHQD-7g | 98 | 12 | R |
8 | eQN-12a | 89 | 17 | R |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zielińska-Błajet, M.; Najdek, J. Novel Selenoureas Based on Cinchona Alkaloid Skeleton: Synthesis and Catalytic Investigations. Materials 2021, 14, 600. https://doi.org/10.3390/ma14030600
Zielińska-Błajet M, Najdek J. Novel Selenoureas Based on Cinchona Alkaloid Skeleton: Synthesis and Catalytic Investigations. Materials. 2021; 14(3):600. https://doi.org/10.3390/ma14030600
Chicago/Turabian StyleZielińska-Błajet, Mariola, and Joanna Najdek. 2021. "Novel Selenoureas Based on Cinchona Alkaloid Skeleton: Synthesis and Catalytic Investigations" Materials 14, no. 3: 600. https://doi.org/10.3390/ma14030600
APA StyleZielińska-Błajet, M., & Najdek, J. (2021). Novel Selenoureas Based on Cinchona Alkaloid Skeleton: Synthesis and Catalytic Investigations. Materials, 14(3), 600. https://doi.org/10.3390/ma14030600