Effect of Molybdenum on the Impact Toughness of Heat-Affected Zone in High-Strength Low-Alloy Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Material Characterization
3. Results and Discussion
3.1. Microstructural Evolution
3.2. Impact Toughness of Steels
3.3. Effect of Mo Addition on the Precipitation Behavior
3.3.1. Austenite Size in Steels
3.3.2. Precipitates in Steels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vervynckt, S.; Verbeken, K.; Lopez, B.; Jonas, J.J. Modern HSLA steels and role of non-recrystallisation temperature. Int. Mater. Rev. 2012, 57, 187–207. [Google Scholar] [CrossRef]
- Jun, H.J.; Kang, K.B.; Park, C.G. Effects of cooling rate and isothermal holding on the precipitation behavior during continuous casting of Nb–Ti bearing HSLA steels. Scripta Mater. 2003, 49, 1081–1086. [Google Scholar] [CrossRef]
- Han, G.; Xie, Z.J.; Xiong, L.; Shang, C.J.; Misra, R.D.K. Evolution of nano-size precipitation and mechanical properties in a high strength-ductility low alloy steel through intercritical treatment. Mat. Sci. Eng. A 2017, 705, 89–97. [Google Scholar] [CrossRef]
- Charleux, M.; Poole, W.J.; Militzer, M.; Deschamps, A. Precipitation behavior and its effect on strengthening of an HSLA-Nb/Ti steel. Metall. Mater. Trans. A 2001, 32, 1635–1647. [Google Scholar] [CrossRef]
- Shao, Y.; Liu, C.; Yan, Z.; Li, H.; Liu, Y. Formation mechanism and control methods of acicular ferrite in HSLA steels: A review. J. Mater. Sci. Technol. 2018, 34, 737–744. [Google Scholar] [CrossRef]
- Lee, K.H.; Kim, M.C.; Lee, B.S.; Wee, D.M. Master curve characterization of the fracture toughness behavior in SA508 Gr.4N low alloy steels. J. Nucl. Mater. 2010, 403, 68–74. [Google Scholar] [CrossRef]
- Bu, F.Z.; Wang, X.M.; Yang, S.W.; Shang, C.J.; Misra, R.D.K. Contribution of interphase precipitation on yield strength in thermomechanically simulated Ti–Nb and Ti–Nb–Mo microalloyed steels. Mat. Sci. Eng. A 2015, 620, 22–29. [Google Scholar] [CrossRef]
- Franceschi, M.; Pezzato, L.; Gennari, C.; Fabrizi, A.; Polyakova, M.; Konstantinov, D.; Brunelli, K.; Dabalà, M. Effect of intercritical annealing and austempering on the microstructure and mechanical properties of a high silicon manganese steel. Metals 2020, 10, 1448. [Google Scholar] [CrossRef]
- Franceschi, M.; Pezzato, L.; Settimi, A.G.; Gennari, C.; Pigato, M.; Polyakova, M.; Konstantinov, D.; Brunelli, K.; Dabalà, M. Effect of different austempering heat treatments on corrosion properties of high silicon steel. Materials 2021, 14, 288. [Google Scholar] [CrossRef]
- Zou, X.; Sun, J.; Matsuura, H.; Wang, C. Unravelling microstructure evolution and grain boundary misorientation in coarse-grained heat-affected zone of EH420 shipbuilding steel subject to varied welding heat inputs. Metall. Mater. Trans. A 2020, 51, 1044–1050. [Google Scholar] [CrossRef]
- Pu, J.; Yu, S.F.; Li, Y.Y. Effects of Zr-Ti on the microstructure and properties of flux aided backing submerged arc weld metals. J. Alloy Compd. 2017, 692, 351–358. [Google Scholar] [CrossRef]
- Kojima, A.; Yoshii, K.; Hada, T.; Saeki, O.; Ichikawa, K.; Yoshida, Y.; Shimura, Y.; Azuma, K. Development of high HAZ toughness steel plates for box columns with high heat input welding. Nippon. Steel Tech. Rep. 2004, 90, 39–44. [Google Scholar]
- Wan, X.; Zhou, B.; Nune, K.C.; Li, Y.; Wu, K.; Li, G. In-situ microscopy study of grain refinement in the simulated heat-affected zone of high-strength low-alloy steel by TiN particle. Sci. Technol. Weld. Joi. 2017, 22, 343–352. [Google Scholar] [CrossRef]
- Chen, X.W.; Qiao, G.Y.; Han, X.L.; Wang, X.; Xiao, F.R.; Liao, B. Effects of Mo, Cr and Nb on microstructure and mechanical properties of heat affected zone for Nb-bearing X80 pipeline steels. Mater. Design 2014, 53, 888–901. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chen, C.C.; Yang, J.R. Microstructure characterization of nanometer carbides heterogeneous precipitation in Ti–Nb and Ti–Nb–Mo steel. Mater. Charact. 2014, 88, 69–79. [Google Scholar] [CrossRef]
- Yan, B.; Liu, Y.; Wang, Z.; Liu, C.; Si, Y.; Li, H.; Yu, J. The Effect of Precipitate Evolution on Austenite Grain Growth in RAFM Steel. Materials 2017, 10, 1017. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Du, L.X.; Zang, M.; Yin, S.J.; Wang, Y.G.; Qi, X.Y.; Gao, X.H.; Misra, R.D.K. On the determining role of acicular ferrite in V-N microalloyed steel in increasing strength-toughness combination. Mater. Charact. 2016, 118, 446–453. [Google Scholar] [CrossRef]
- Sun, J.; Lu, S. Influence of inter-dendritic segregation on the precipitation behaviour and mechanical properties in a vanadium-containing Fe–Cr–Ni–Mo weld metal. Scripta Mater. 2020, 186, 174–179. [Google Scholar] [CrossRef]
- Hu, H.; Xu, G.; Wang, L.; Xue, Z.; Zhang, Y.; Liu, G. The effects of Nb and Mo addition on transformation and properties in low carbon bainitic steels. Mater. Design 2015, 84, 95–99. [Google Scholar] [CrossRef]
- Gong, P.; Liu, X.G.; Rijkenberg, A.; Rainforth, W.M. The effect of molybdenum on interphase precipitation and microstructures in microalloyed steels containing titanium and vanadium. Acta Mater. 2018, 161, 374–387. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.H.; Heo, Y.U.; Lee, C.H.; Bhadeshia, H.K.D.H.; Suh, D.W. Interphase precipitation in Ti–Nb and Ti–Nb–Mo bearing steel. Mater. Sci. Tech-lond 2013, 29, 309–313. [Google Scholar] [CrossRef]
- Gómez, M.; Medina, S.F.; Quispe, A.; Valles, P. Static recrystallization and induced precipitation in a low Nb microalloyed steel. ISIJ Int. 2002, 42, 423–431. [Google Scholar] [CrossRef] [Green Version]
- Medina, S.F.; Gómez, M.; Rancel, L. Grain refinement by intragranular nucleation of ferrite in a high nitrogen content vanadium microalloyed steel. Scripta Mater. 2008, 58, 1110–1113. [Google Scholar] [CrossRef]
- Prikryl, M.; Kroupa, A.; Weatherly, G.C.; Subramanian, S.V. Precipitation behavior in a medium carbon, Ti-V-N microalloyed steel. Metall. Mater. Trans. A 1996, 27, 1149–1165. [Google Scholar] [CrossRef]
- Costin, W.L.; Lavigne, O.; Kotousov, A. A study on the relationship between microstructure and mechanical properties of acicular ferrite and upper bainite. Mat. Sci. Eng. A 2016, 663, 193–203. [Google Scholar] [CrossRef]
- Cao, R.; Li, G.; Fang, X.Y.; Song, J.; Chen, J.H. Investigation on the effects of microstructure on the impact and fracture toughness of a C–Mn steel with various microstructures. Mat. Sci. Eng. A 2013, 564, 509–524. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Liu, Y.; Liu, C.; Dong, J.; Yu, L.; Li, H. Study of the kinetics of austenite grain growth by dynamic Ti-rich and Nb-rich carbonitride dissolution in HSLA steel: In-situ observation and modeling. Mater. Charact. 2020, 169, 110612. [Google Scholar] [CrossRef]
- Mandal, G.K.; Das, S.S.; Kumar, T.; Kamaraj, A.; Mondal, K.; Srivastava, V.C. Role of precipitates in recrystallization mechanisms of Nb-Mo microalloyed steel. J. Mater. Eng. Perform. 2018, 27, 6748–6757. [Google Scholar] [CrossRef]
- Jang, J.H.; Lee, C.H.; Heo, Y.U.; Suh, D.W. Stability of (Ti,M)C (M=Nb, V, Mo and W) carbide in steels using first-principles calculations. Acta Mater. 2012, 60, 208–217. [Google Scholar] [CrossRef]
- Lee, W.B.; Hong, S.G.; Park, C.G.; Park, S.H. Carbide precipitation and high-temperature strength of hot-rolled high-strength, low-alloy steels containing Nb and Mo. Metall. Mater. Trans. A 2002, 33, 1689–1698. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wang, Z.; Deng, X.; Li, Y.; Lou, H.; Wang, G. Precipitation behavior and kinetics in Nb-V-bearing low-carbon steel. Mater. Lett. 2016, 182, 6–9. [Google Scholar] [CrossRef]
- Pan, H.; Ding, H.; Cai, M. Microstructural evolution and precipitation behavior of the warm-rolled medium Mn steels containing Nb or Nb-Mo during intercritical annealing. Mat. Sci. Eng. A 2018, 24, 375–382. [Google Scholar] [CrossRef]
- Ming, L.; Wang, Q.; Wang, H.; Zhang, C.; Wei, Z.; Guo, A. A remarkable role of niobium precipitation in refining microstructure and improving toughness of A QT-treated 20CrMo47NbV steel with ultrahigh strength. Mat. Sci. Eng. A 2014, 613, 240–249. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, C.; Li, R.; Gao, J.; Wang, M.; Zhang, F. Characterization of the microstructures and mechanical properties of 25CrMo48V martensitic steel tempered at different times. Mat. Sci. Eng. A 2013, 559, 130–134. [Google Scholar] [CrossRef]
Samples | C | Si | Mn | P | S | Mo | Al | Ti | Nb |
---|---|---|---|---|---|---|---|---|---|
N1 | 0.06 | 0.23 | 1.44 | 0.016 | 0.004 | 0 | 0.032 | 0.017 | 0.032 |
N2 | 0.06 | 0.21 | 1.43 | 0.015 | 0.006 | 0.04 | 0.030 | 0.013 | 0.037 |
N3 | 0.06 | 0.23 | 1.41 | 0.015 | 0.006 | 0.06 | 0.037 | 0.017 | 0.035 |
N4 | 0.06 | 0.24 | 1.60 | 0.015 | 0.008 | 0.07 | 0.030 | 0.018 | 0.034 |
Thickness of steel/mm | 100 | 85 | 70 | 55 | 45 | 35 | 30 |
Reduction of per pass/mm | 0 | 15 | 15 | 15 | 10 | 10 | 5 |
Reducing rate/% | 0 | 15 | 17.6 | 21.4 | 18.2 | 22.2 | 14.3 |
Samples | V-notch Location/mm | Test Temperature/°C | Impact Energy/J | Average Value of Impact Energy/J |
---|---|---|---|---|
N1 | Fusion line + 2 | −20 | 70 | 70 |
76 | ||||
64 | ||||
N2 | Fusion line + 2 | −20 | 103 | 108 |
115 | ||||
107 | ||||
N3 | Fusion line + 2 | −20 | 140 | 155 |
160 | ||||
165 | ||||
N4 | Fusion line + 2 | −20 | 178 | 170 |
159 | ||||
173 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Xiao, P.; Wu, S.; Yan, C.; Ma, X.; Liu, Z.; Chen, W.; Zhu, L.; Zhang, Q. Effect of Molybdenum on the Impact Toughness of Heat-Affected Zone in High-Strength Low-Alloy Steel. Materials 2021, 14, 1430. https://doi.org/10.3390/ma14061430
Wu X, Xiao P, Wu S, Yan C, Ma X, Liu Z, Chen W, Zhu L, Zhang Q. Effect of Molybdenum on the Impact Toughness of Heat-Affected Zone in High-Strength Low-Alloy Steel. Materials. 2021; 14(6):1430. https://doi.org/10.3390/ma14061430
Chicago/Turabian StyleWu, Xiaoyan, Pengcheng Xiao, Shujing Wu, Chunliang Yan, Xuegang Ma, Zengxun Liu, Wei Chen, Liguang Zhu, and Qingjun Zhang. 2021. "Effect of Molybdenum on the Impact Toughness of Heat-Affected Zone in High-Strength Low-Alloy Steel" Materials 14, no. 6: 1430. https://doi.org/10.3390/ma14061430
APA StyleWu, X., Xiao, P., Wu, S., Yan, C., Ma, X., Liu, Z., Chen, W., Zhu, L., & Zhang, Q. (2021). Effect of Molybdenum on the Impact Toughness of Heat-Affected Zone in High-Strength Low-Alloy Steel. Materials, 14(6), 1430. https://doi.org/10.3390/ma14061430