Approaches to the Mechanical Properties of Threaded Studs Welded to RHS Columns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Welding Process
2.2. Procedure of Getting the Samples
2.3. Hardness
Yield Stress and Ultimate Tensile Strength Based on HV Number
2.4. Macrographs, Micrographs, and Microstructure
2.5. Small Punch Tests
Yield Stress and Ultimate Tensile Strength Estimation through SPT
2.6. Tensile Tests on Tubes and Studs
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Xue, L. Experimental study of moment–rotation characteristics of reverse channel connections to tubular columns. J. Constr. Steel Res. 2013, 85, 92–104. [Google Scholar] [CrossRef]
- Elghazouli, A.; Málaga-Chuquitaype, C.; Castro, J.M.; Orton, A. Experimental monotonic and cyclic behavior of blind-bolted angle connections. Eng. Struct. 2009, 31, 2540–2553. [Google Scholar] [CrossRef]
- Thai, H.-T.; Uy, B. Rotational stiffness and moment resistance of bolted endplate joints with hollow or CFST columns. J. Constr. Steel Res. 2016, 126, 139–152. [Google Scholar] [CrossRef]
- Thai, H.-T.; Uy, B.; Yamesri; Aslani, F. Behaviour of bolted endplate composite joints to square and circular CFST columns. J. Constr. Steel Res. 2017, 131, 68–82. [Google Scholar] [CrossRef]
- Maquoi, R.; Naveau, X.; Rondal, J. Beam-column welded stud connections. J. Constr. Steel Res. 1984, 4, 3–26. [Google Scholar] [CrossRef]
- Vandegans, D. Use of Threaded Studs in Joints between I-Beam and RHS-Column. IABSE Rep. 1996, 75, 53–62. [Google Scholar]
- ISO 6892-1:2016. Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature; ISO: Geneva, Switzerland, 2016. [Google Scholar]
- Kameda, J.; Mao, X. Small-punch and TEM-disc testing techniques and their application to characterization of radiation damage. J. Mater. Sci. 1992, 27, 983–989. [Google Scholar] [CrossRef]
- Rodríguez, C.; García Cabezas, J.; Cárdenas, E.; Belzunce, F.J.; Betegón, C. Mechanical Properties Characterization of Heat-Affected Zone Using the Small Punch Test. Weld. J. 2009, 88, 188–192. [Google Scholar]
- Fujita, M.; Kuki, K. An Evaluation of Mechanical Properties with the Hardness of Building Steel Structural Members for Reuse by NDT. Metals 2016, 6, 247. [Google Scholar] [CrossRef] [Green Version]
- Murphy, G.; Arbtin, E. Correlation of Vickers Hardness Number, Modulus of Elasticity, and the Yield Strength for Ductile Metals; Ames Laboratory ISC Technical Reports. 50; University of Iowa: Iowa City, IA, USA, 1953. [Google Scholar]
- García, T.; Rodríguez, C.; Belzunce, F.; Suárez, C. Estimation of the mechanical properties of metallic materials by means of the small punch test. J. Alloys Compd. 2014, 582, 708–717. [Google Scholar] [CrossRef]
- Manahan, M.; Argon, A.; Harling, O. The development of a miniaturized disk bend test for the determination of postirradiation mechanical properties. J. Nucl. Mater. 1981, 104, 1545–1550. [Google Scholar] [CrossRef]
- Huang, F.H.; Hamilton, M.L.; Wire, G.L. Bend Testing for Miniature Disks. Nucl. Technol. 1982, 57, 234–242. [Google Scholar] [CrossRef]
- Baik, J.-M.; Kameda, J.; Buck, O. Development of Small Punch Tests for Ductile-Brittle Transition Temperature Measurement of Temper Embrittled Ni-Cr Steels. In The Use of Small-Scale Specimens for Testing Irradiated Material; ASTM International: Philadelphia, PA, USA, 2008; p. 92. [Google Scholar] [CrossRef]
- Foulds, J.; Viswanathan, R. Small Punch Testing for Determining the Material Toughness of Low Alloy Steel Components in Service. J. Eng. Mater. Technol. 1994, 116, 457–464. [Google Scholar] [CrossRef]
- Ha, J.S.; Fleury, E. Small punch tests on steels for steam power plant(I). KSME Int. J. 1998, 12. [Google Scholar] [CrossRef]
- Altstadt, E.; Houska, M.; Simonovski, I.; Bruchhausen, M.; Holmström, S.; LaCalle, R. On the estimation of ultimate tensile stress from small punch testing. Int. J. Mech. Sci. 2018, 136, 85–93. [Google Scholar] [CrossRef]
- Cuesta, I.; Alegre, J. Determination of the fracture toughness by applying a structural integrity approach to pre-cracked Small Punch Test specimens. Eng. Fract. Mech. 2011, 78, 289–300. [Google Scholar] [CrossRef]
- Guan, K.; Hua, L.; Wang, Q.; Zou, X.; Song, M. Assessment of toughness in long term service CrMo low alloy steel by fracture toughness and small punch test. Nucl. Eng. Des. 2011, 241, 1407–1413. [Google Scholar] [CrossRef]
- Konopík, P.; Džugan, J.; Procházka, R. Determination of Fracture Toughness and Tensile Properties of Structural Steels by Small Punch Test and Micro-Tensile Test. In Proceedings of the METAL 2013—22nd International Conference on Metallurgy and Materials, Conference Proceedings, Brno, Czech Republic, 15–17 May 2013. [Google Scholar]
- Rodriguez, C.F.; Cárdenas, E.; Belzunce, F.J.; Betegón, C. Fracture Characterization of Steels by Means of the Small Punch Test. Exp. Mech. 2013, 53, 385–392. [Google Scholar] [CrossRef]
- CEN Workshop Agreement CWA 15627:2006. Small Punch Test Method for Metallic Materials; CEN: Brussels, Belgium, 2006. [Google Scholar]
- Bruchhausen, M.; Austin, T.; Holmström, S.; Altstadt, E.; Dymacek, P.; Jeffs, S.; Lancaster, R.; LaCalle, R.; Matocha, K.; Petzová, J. European Standard on Small Punch Testing of Metallic Materials. In American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP; ASME: Waikoloa, HI, USA, 2017. [Google Scholar] [CrossRef]
- EN ISO14555. Welding. Arc Stud Welding of Metallic Materials; ISO 14555:2017; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- EN ISO 898-1. Mechanical Properties of Fasteners Made of Carbon Steel and Alloy Steel. Part 1: Bolts, Screws and Studs with Specified Property Classes. Coarse Thread and Fine Pitch Thread; ISO 898-1:2013; ISO: Geneva, Switzerland, 2015. [Google Scholar]
- EN 10263-2. Steel Rod, Bars and Wire for Cold Heading and Cold Extrusion. Part 2: Technical Delivery Conditions for Steels Not Intended for Heat Treatment after Cold Working; CEN: Brussels, Belgium, 2018. [Google Scholar]
- EN 10219-1. Cold Formed Welded Steel Structural Hollow Sections of Non-Alloy and Fine Grain Steels Part 1: Technical Delivery Conditions; CEN: Brussels, Belgium, 2007. [Google Scholar]
- Ginzburg, V.B.; Ballas, R. Flat Rolling Fundamentals; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar] [CrossRef]
- EN ISO 15614-1. Specification and Qualification of Welding Procedures for Metallic Materials. Welding Procedure Test. Part 1: Arc and Gas Welding of Steels and Arc Welding of Nickel and Nickel Alloys; ISO 15614-1:2017, Corrected Version 2017-10-01; ISO: Geneva, Switzerland, 2018. [Google Scholar]
- Taylor, M.; Choi, K.; Sun, X.; Matlock, D.; Packard, C.; Xu, L.; Barlat, F. Correlations between nanoindentation hardness and macroscopic mechanical properties in DP980 steels. Mater. Sci. Eng. A 2014, 597, 431–439. [Google Scholar] [CrossRef]
- Hashemi, S. Strength–hardness statistical correlation in API X65 steel. Mater. Sci. Eng. A 2011, 528, 1648–1655. [Google Scholar] [CrossRef]
- Holmes, J.; Queeney, R.A. Fatigue Crack Initiation in a Porous Steel. Powder Met. 1985, 28, 231–235. [Google Scholar] [CrossRef]
- Lawrence, F.V.; Ho, N.J.; Mazumdar, P.K. Predicting the Fatigue Resistance of Welds. Annu. Rev. Mater. Res. 1981, 11, 401–425. [Google Scholar] [CrossRef]
Tube Thicknesses | Stud Class | M16 | M20 |
---|---|---|---|
8 mm | K800 | X | X |
4.8 | X | ||
10 mm | K800 | X | X |
4.8 | X |
Steel | ||||||
---|---|---|---|---|---|---|
4.8 | 0.55 | - | - | 0.05 | 0.06 | - |
8MnSi7 (1.5113) | 0.10 | 0.90 to 1.10 | 1.60 to 1.80 | 0.025 | 0.025 | ≤0.020 |
S355J2H (1.0577) | 0.22 | ≤0.55 | ≤1.60 | 0.035 | 0.035 | >0.02 |
Steel | ||||||
---|---|---|---|---|---|---|
S355 J2H (SHS 200 × 200 × 8) | 0.17 | 0.011 | 1.191 | 0.011 | 0.005 | 0.027 |
S355 J2H (RHS 200 × 150 × 10) | 0.070 | 0.014 | 0.850 | 0.013 | 0.005 | 0.025 |
8MnSi7 (M20) | 0.094 | 0.994 | 1.67 | 0.015 | 0.003 | 0.011 |
8MnSi7 (M16) | 0.089 | 1 | 1.67 | 0.013 | 0.005 | 0.012 |
4.8 | 0.14 | - | 0.4 | 0.012 | 0.009 | 0.03 |
Tube Code | Vickers Hardness Number | ||||||
---|---|---|---|---|---|---|---|
Zone B | Zone C | Zone D | Zone E | Zone F | Zone G | Zone H | |
T8 M16 K800 | 278.14 | 275.13 | 299.37 | 217.23 | 168.48 | 179.37 | 155.03 |
T8 M20 4.8 | 213.50 | 207.88 | 188.17 | 162.07 | 162.42 | 183.82 | 151.76 |
T8 M20 K800 | 253.1 | 226.10 | 321.6 | 171.67 | 164.93 | 162.67 | 146.10 |
T10 M16 K800 | 278.70 | 266.87 | 324.66 | 173.77 | 182.19 | 172.51 | 182.08 |
T10 M20 4.8 | 192.98 | 205.93 | 205.55 | 212.76 | 183.16 | 176.30 | 174.68 |
T10 M20 K800 | 258.48 | 249.98 | 302.07 | 207.87 | 182.21 | 202.94 | 169.91 |
Specimen | fy [MPa] | fu [MPa] | fu/fy |
---|---|---|---|
S16-4.8-30-1 | 455.2 | 493.7 | 1.08 |
S16-4.8-30-2 | 417.5 | 494.2 | 1.18 |
S16-K800-40-1 | 579.7 | 834.5 | 1.44 |
S16-K800-40-2 | 629.1 | 814.5 | 1.29 |
S20-4.8-35-1 | 573.5 | 638.4 | 1.11 |
S20-4.8-35-2 | 481.7 | 634.9 | 1.32 |
S20-K800-50-1 | 642.6 | 800.9 | 1.25 |
S20-K800-50-2 | 735.7 | 836.6 | 1.14 |
S20-K800-50-3 | 683.7 | 779.2 | 1.14 |
C200×150×10 | 502.7 | 600.3 | 1.19 |
C200 × 200 × 8 | 411.5 | 483.4 | 1.17 |
Zone | [mm] | HV | SPT | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Equation (1) [MPa] | Equation (2) [MPa] | Equation (3) [MPa] | d [mm] | /t·d [MPa] | /t2 [MPa] | Equation (4) [MPa] | Equation (5) [MPa] | A** Equation (6) [%] | ||
1 | 0.444 | 690.5 | 958.1 | 795.3 | 1.54 | 2336.4 | 1943.2 | 672.4 | 647.2 | 21.02 |
2 | 0.447 | 682.3 | 946.0 | 787.8 | 1.36 | 2776.1 | 1949.2 | 674.4 | 769.0 | 18.43 |
3 | 0.453 | 748.6 | 1043.4 | 848.4 | 1.35 | 2694.6 | 1660.5 | 574.5 | 746.4 | 18.10 |
4 | 0.443 | 523.8 | 713.2 | 643.1 | 1.72 | 1927.6 | 1162.2 | 402.1 | 533.9 | 23.51 |
5 | 0.534 | 390.5 | 517.3 | 521.2 | 1.75 | 1803.5 | 1133.8 | 392.3 | 499.6 | 19.84 |
6 | 0.394 | 420.3 | 561.1 | 548.4 | 1.78 | 1666.7 | 910.8 | 315.1 | 461.7 | 27.43 |
7 | 0.410 | 353.7 | 463.2 | 487.6 | 1.56 | 1742.4 | 1004.2 | 347.5 | 482.7 | 23.13 |
Zone | [mm] | HV | SPT | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Equation (1) [MPa] | Equation (2) [MPa] | Equation (3) [MPa] | d [mm] | /t·d [MPa] | /t2 [MPa] | Equation (4) [MPa] | Equation (5) [MPa] | A** Equation (6) [%] | ||
1 | 0.472 | 513.6 | 698.2 | 633.7 | 1.60 | 1642.1 | 1177.3 | 407.3 | 454.9 | 20.61 |
2 | 0.471 | 498.3 | 675.6 | 619.7 | 1.60 | 1774.2 | 1215.4 | 420.5 | 491.5 | 20.64 |
3 | 0.468 | 444.3 | 596.4 | 570.4 | 1.71 | 1729.5 | 1138.4 | 393.9 | 479.1 | 22.10 |
4 | 0.462 | 372.9 | 491.5 | 505.2 | 1.56 | 2171.5 | 1121.6 | 388.1 | 601.5 | 20.49 |
5 | 0.553 | 373.9 | 492.9 | 506.1 | 1.78 | 1631.8 | 941.6 | 325.8 | 452.0 | 19.54 |
6 | 0.435 | 432.4 | 578.9 | 559.6 | 1.49 | 1743.0 | 911.1 | 315.2 | 482.8 | 20.82 |
7 | 0.430 | 344.7 | 450.1 | 479.4 | 1.59 | 1550.6 | 872.6 | 301.9 | 429.5 | 22.43 |
Zone | [mm] | HV | SPT | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Equation (1) [MPa] | Equation (2) [MPa] | Equation (3) [MPa] | d [mm] | /t·d [MPa] | /t2 [MPa] | Equation (4) [MPa] | Equation (5) [MPa] | A** Equation (6) [%] | ||
1 | 0.479 | 622.0 | 857.4 | 732.8 | 1.64 | 2028.6 | 1479.0 | 511.7 | 561.9 | 20.86 |
2 | 0.476 | 548.1 | 748.9 | 665.3 | 1.64 | 2083.9 | 1874.4 | 648.5 | 577.2 | 20.99 |
3 | 0.471 | 809.4 | 1132.8 | 904.0 | 1.52 | 2960.4 | 1719.0 | 594.8 | 820.0 | 19.57 |
4 | 0.469 | 399.2 | 530.1 | 529.2 | 1.52 | 2185.5 | 1310.9 | 453.6 | 605.4 | 19.64 |
5 | 0.527 | 380.8 | 503.0 | 512.3 | 1.77 | 1646.2 | 1057.6 | 365.9 | 456.0 | 20.42 |
6 | 0.418 | 374.6 | 493.9 | 506.7 | 1.40 | 1602.3 | 835.8 | 289.2 | 443.8 | 20.39 |
7 | 0.429 | 329.2 | 427.3 | 465.3 | 1.65 | 1648.6 | 1001.2 | 346.4 | 456.7 | 23.28 |
Zone | [mm] | HV | SPT | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Equation (1) [MPa] | Equation (2) [MPa] | Equation (3) [MPa] | d [mm] | /t·d [MPa] | /t2 [MPa] | Equation (4) [MPa] | Equation (5) [MPa] | A** Equation (6) [%] | ||
1 | 0.465 | 692.0 | 960.3 | 796.7 | 1.64 | 2338.6 | 1529.7 | 529.3 | 647.8 | 21.36 |
2 | 0.471 | 659.7 | 912.8 | 767.2 | 1.57 | 2212.9 | 1717.7 | 594.3 | 612.9 | 20.29 |
3 | 0.474 | 817.8 | 1145.1 | 911.6 | 1.34 | 2993.3 | 1736.2 | 600.7 | 829.1 | 17.15 |
4 | 0.467 | 404.9 | 538.5 | 534.4 | 1.67 | 1700.5 | 1148.6 | 397.4 | 471.0 | 21.67 |
5 | 0.540 | 428.0 | 572.4 | 555.5 | 1.71 | 1713.8 | 1161.1 | 401.8 | 474.7 | 19.24 |
6 | 0.420 | 401.5 | 533.5 | 531.3 | 1.71 | 1646.2 | 1080.3 | 373.8 | 456.0 | 24.70 |
7 | 0.442 | 427.7 | 571.9 | 555.2 | 1.74 | 1642.2 | 854.1 | 295.5 | 454.9 | 23.83 |
Zone | [mm] | HV | SPT | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Equation (1) [MPa] | Equation (2) [MPa] | Equation (3) [MPa] | d [mm] | /t·d [MPa] | /t2 [MPa] | Equation (4) [MPa] | Equation (5) [MPa] | A** Equation (6) [%] | ||
1 | 0.465 | 457.5 | 615.8 | 582.5 | 1.68 | 1558.1 | 1208.0 | 418.0 | 431.6 | 22.09 |
2 | 0.471 | 492.9 | 667.8 | 614.8 | 1.64 | 1847.9 | 1212.9 | 419.7 | 511.9 | 21.51 |
3 | 0.474 | 491.9 | 666.3 | 613.9 | 1.61 | 2125.9 | 1174.9 | 406.5 | 588.9 | 21.76 |
4 | 0.467 | 511.6 | 695.3 | 631.9 | 1.71 | 1762.6 | 1471.5 | 509.1 | 488.2 | 22.35 |
5 | 0.540 | 430.6 | 576.3 | 557.9 | 1.76 | 1578.5 | 1249.6 | 432.4 | 437.2 | 20.79 |
6 | 0.420 | 411.9 | 548.7 | 540.8 | 1.00 | 1675.7 | 1118.5 | 387.0 | 464.2 | 14.18 |
7 | 0.442 | 407.4 | 542.2 | 536.7 | 1.72 | 1643.6 | 941.5 | 325.7 | 455.3 | 23.34 |
Zone | [mm] | HV | SPT | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Equation (1) [MPa] | Equation (2) [MPa] | Equation (3) [MPa] | d [mm] | /t·d [MPa] | /t2 [MPa] | Equation (4) [MPa] | Equation (5) [MPa] | A** Equation (6) [%] | ||
1 | 0.441 | 636.7 | 879.0 | 746.2 | 1.62 | 2186.3 | 1741.6 | 602.6 | 605.6 | 22.23 |
2 | 0.460 | 613.5 | 844.9 | 725.0 | 1.68 | 2293.1 | 1642.9 | 568.4 | 635.2 | 22.12 |
3 | 0.451 | 756.0 | 1054.3 | 855.2 | - | - | - | - | - | - |
4 | 0.445 | 498.2 | 675.6 | 619.7 | 1.67 | 1793.2 | 1195.8 | 413.7 | 496.7 | 22.76 |
5 | 0.535 | 428.0 | 572.5 | 555.5 | 1.80 | 1687.9 | 1204.0 | 416.6 | 467.6 | 20.44 |
6 | 0.434 | 484.7 | 655.8 | 607.3 | 1.73 | 1625.5 | 952.0 | 329.4 | 450.3 | 24.18 |
7 | 0.433 | 394.4 | 523.0 | 524.8 | 1.76 | 1623.7 | 1069.9 | 370.2 | 449.8 | 24.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, I.; Serrano, M.A.; López-Colina, C.; Suárez, J.M.; Gayarre, F.L. Approaches to the Mechanical Properties of Threaded Studs Welded to RHS Columns. Materials 2021, 14, 1429. https://doi.org/10.3390/ma14061429
García I, Serrano MA, López-Colina C, Suárez JM, Gayarre FL. Approaches to the Mechanical Properties of Threaded Studs Welded to RHS Columns. Materials. 2021; 14(6):1429. https://doi.org/10.3390/ma14061429
Chicago/Turabian StyleGarcía, Ismael, Miguel A. Serrano, Carlos López-Colina, Jesús M. Suárez, and Fernando L. Gayarre. 2021. "Approaches to the Mechanical Properties of Threaded Studs Welded to RHS Columns" Materials 14, no. 6: 1429. https://doi.org/10.3390/ma14061429
APA StyleGarcía, I., Serrano, M. A., López-Colina, C., Suárez, J. M., & Gayarre, F. L. (2021). Approaches to the Mechanical Properties of Threaded Studs Welded to RHS Columns. Materials, 14(6), 1429. https://doi.org/10.3390/ma14061429