A Microstructural Investigation of Austenitic Heat Resistant Alloy after 500 h of Steam Oxidation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- The complex oxide scale was grown on the whole surface of the sample. Based on the morphology and chemical composition of its constituents, it can be divided into a few layers.
- The outermost part of the oxide scale is built of a thick layer of coarse-grained Fe2O3. Excessive formation of the hematite is caused by the coarse grain (~52 μm) of the alloy, which reduces the Cr diffusion rate. The hematite layer has a spallation tendency while cooling.
- Beneath the hematite layer, the presence of Fe2NiO4 spinel was detected. It has a tetragonal (tI28) structure. Increased porosity is visible at the interface between hematite and Fe2NiO4. Cr underwent an internal oxidation process.
- The SEM-EDS investigation performed under lowered voltage is a suitable method to obtain valuable information concerning the chemical composition of even very thin oxide layers. It allows one to obtain high quality elemental distribution maps. For the full characterization of present phases, TEM/STEM investigations are necessary. STEM-EELS is an adequate technique to investigate oxide scales.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vivas, J.; San-Martin, D.; Caballero, F.G.; Capdevila, C. High-Chromium (9-12Cr) Steels: Creep Enhancement by Conventional Thermomechanical Treatments. In Welding; Alfaro, S.C.A., Borek, W., Tomiczek, B., Eds.; IntechOpen: Rijeka, Croatia, 2021. [Google Scholar]
- Fuchs, R.; Heuser, H.; Hahn, B. Jochum Properties of matching filler metals for T91/P91. In Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference; ASM International: Hilton Head Island, SC, USA; Viswanathan, R., Gandy, D., Coleman, K., Eds.; ASM International: Hilton Head Island, SC, USA, 2005; pp. 950–965. [Google Scholar]
- Hald, J. Microstructure and long-term creep properties of 9–12% Cr steels. Int. J. Press. Vessel. Pip. 2008, 85, 30–37. [Google Scholar] [CrossRef]
- Samuel, E.I.; Choudhary, B.K.; Palaparti, D.R.; Mathew, M.D. Mathew Creep Deformation and Rupture Behaviour of P92 Steel at 923 K. Procedia Eng. 2013, 55, 64–69. [Google Scholar] [CrossRef] [Green Version]
- Ehlers, J.; Young, D.J.; Smaardijk, E.J.; Tyagi, A.K.; Penkalla, H.J.; Singheiser, L.; Quadakkers, W.J. Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments. Corros. Sci. 2006, 48, 3428–3454. [Google Scholar] [CrossRef]
- Rutkowski, B.; Gil, A.; Agüero, A.; González, V.; Czyrska-Filemonowicz, A. Microstructure, Chemical- and Phase Composition of Sanicro 25 Austenitic Steel after Oxidation in Steam at 700 °C. Oxid. Met. 2018, 183–195. [Google Scholar] [CrossRef]
- Guiraldenq, P.; Duparc, O.H. Olivier The genesis of the Schaeffler diagram in the history of stainless steel. Met. Res. Technol. 2017, 114, 613. [Google Scholar] [CrossRef]
- Karato, S. Dislocation creep. In Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth; Karato, S., Ed.; Cambridge University Press: Cambridge, UK, 2008; pp. 143–167. ISBN 9780511804892. [Google Scholar]
- Vanaja, J.; Laha, K.; Mathew, M.D.; Jayakumar, T.; Rajendra Kumar, E. Effects of tungsten and tantalum on creep deformation and rupture properties of Reduced Activation Ferritic-Martensitic steel. Procedia Eng. 2013, 55, 271–276. [Google Scholar] [CrossRef] [Green Version]
- Abe, F. Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants. Sci. Technol. Adv. Mater. 2008, 9, 13002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rautio, R.; Bruce, S. Alloy for Ultrasupercritical Coal Fired Boilers. Adv. Mater. Process. 2008, 166, 23–26. [Google Scholar]
- Sourmail, T.; Bhadeshia, H.K.D.H. Microstructural evolution in two variants of NF709 at 1023 and 1073 K. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2005, 36, 23–34. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, J.; Li, X. Microstructural evolution and change in hardness during creep of NF709 austenitic stainless steel. Acta Metall. Sin. (Engl. Lett.) 2011, 24, 220–224. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, P.; Sham, T.-L. Report on FY 2020 Creep, Fatigue, and Creep-Fatigue Testing of Alloy 709 Base Metal at ORNL; US Department of Energy: Oak Ridge, TN, USA, 2020.
- Farooq, M. Strengthening and Degradation Mechanisms in Austenitic Stainless Steels at Elevated Temperature; KTH Royal Institute of Technology: Stockholm, Sweden, 2013. [Google Scholar]
- Maziasz, P.J.; Pint, B.A.; Shingledecker, J.P.; More, K.L.; Evans, N.D.; Lara-curzio, E. Austenitic Stainless Steels and Alloys with Improved High-Temperature Performance for Advanced Microturbine Recuperators. In Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air, Vienna, Austria, 14–17 June 2004; pp. 131–143. [Google Scholar]
- Lall, A.; Sarkar, S.; Ding, R.; Bowen, P.; Rabiei, A. Performance of Alloy 709 under creep-fatigue at various dwell times. Mater. Sci. Eng. A 2019, 761, 138028. [Google Scholar] [CrossRef]
- Osgerby, S.; Fry, A.T. Steam Oxidation Resistance of Selected Austenitic Steels. In Proceedings of the High Temperature Corrosion and Protection of Materials 6; Trans Tech Publications Ltd: Baech, Switzerland, 2004; Volume 461, pp. 1023–1030. [Google Scholar]
- Rutkowski, B. Microstructural Characterisation of Austenitic Heat Resistant Sanicro 25 Steel after Steam Oxidation. Materials 2020, 13, 3382. [Google Scholar] [CrossRef]
- Stadelmann, P. JEMS Java Electron Microscopy Software. Available online: https://www.jems-swiss.ch/ (accessed on 1 February 2021).
- Galerie, A.; Toscan, F.; Dupeux, M.; Mougin, J.; Lucazeau, G.; Valot, C.; Huntz, A.-M.; Antoni, L. Stress and adhesion of chromia-rich scales on ferritic stainless steels in relation with spallation. Mater. Res. 2004, 7, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Baleix, S.; Bernhart, G.; Lours, P. Oxidation and oxide spallation of heat resistant cast steels for superplastic forming dies. Mater. Sci. Eng. A 2002, 327, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Takeda, M.; Onishi, T.; Nakakubo, S.; Fujimoto, S. Physical properties of iron-oxide scales on Si-containing steels at high temperature. Mater. Trans. 2009, 50, 2242–2246. [Google Scholar] [CrossRef] [Green Version]
- Petric, A.; Ling, H. Electrical conductivity and thermal expansion of spinels at elevated temperatures. J. Am. Ceram. Soc. 2007, 90, 1515–1520. [Google Scholar] [CrossRef]
- Wei, W.; Wang, Z.; Liu, M. The impact of grain size on oxidation behavior of TP304H austenitic stainless steel at high temperature in air. Appl. Mech. Mater. 2012, 117–119, 990–994. [Google Scholar] [CrossRef]
- Trindade, V.B.; Krupp, U.; Hanjari, B.Z.; Yang, S.; Christ, H.J. Effect of alloy grain size on the high-temperature oxidation behavior of the austenitic steel TP 347. Mater. Res. 2005, 8, 371–375. [Google Scholar] [CrossRef]
Element | Fe | C | Ni | Cr | Mo | Mn | Si | Nb | Ti | P | S |
---|---|---|---|---|---|---|---|---|---|---|---|
Wt.% | balance | 0.18 | 24.73 | 20.30 | 1.31 | 0.91 | 0.41 | 0.24 | 0.11 | 0.01 | 0.01 |
Std. Dev. | – | 0.01 | 0.15 | 0.17 | 0.01 | 0.02 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 |
Parameter | t0 | t1 | t2 | t3 | t4 | t5 | t6 | t7 | t8 |
---|---|---|---|---|---|---|---|---|---|
time (h) | 0 | 24 | 48 | 72 | 96 | 144 | 192 | 240 | 500 |
mass (mg) | 2088.764 | 2093.120 | 2093.331 | 2093.344 | 2093.373 | 2093.323 | 2093.336 | 2093.344 | 2093.472 |
mass to area (mg/cm2) | 606.6255 | 607.8907 | 607.9519 | 607.9557 | 607.9639 | 607.9496 | 607.9534 | 607.9557 | 607.9928 |
mass gain (tn−t0) | 0.000 | 1.265 | 1.326 | 1.330 | 1.338 | 1.324 | 1.328 | 1.330 | 1.367 |
mass gain (tn−tn−1) | 0.000 | 1.265 | 0.061 | 0.004 | 0.008 | -0.014 | 0.004 | 0.002 | 0.037 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rutkowski, B.; Baran, K.; Błoniarz, R.; Kozieł, T. A Microstructural Investigation of Austenitic Heat Resistant Alloy after 500 h of Steam Oxidation. Materials 2021, 14, 1453. https://doi.org/10.3390/ma14061453
Rutkowski B, Baran K, Błoniarz R, Kozieł T. A Microstructural Investigation of Austenitic Heat Resistant Alloy after 500 h of Steam Oxidation. Materials. 2021; 14(6):1453. https://doi.org/10.3390/ma14061453
Chicago/Turabian StyleRutkowski, Bogdan, Krzysztof Baran, Remigiusz Błoniarz, and Tomasz Kozieł. 2021. "A Microstructural Investigation of Austenitic Heat Resistant Alloy after 500 h of Steam Oxidation" Materials 14, no. 6: 1453. https://doi.org/10.3390/ma14061453
APA StyleRutkowski, B., Baran, K., Błoniarz, R., & Kozieł, T. (2021). A Microstructural Investigation of Austenitic Heat Resistant Alloy after 500 h of Steam Oxidation. Materials, 14(6), 1453. https://doi.org/10.3390/ma14061453