Current Applications of Recycled Aggregates from Construction and Demolition: A Review
Abstract
:1. Introduction
2. Composition and Properties of Recycled Materials
2.1. Composition and Chemical Characteristics of Recycled Aggregates (RAs)
2.2. Water Absorption
2.3. Density
2.4. Environmental Limitations of the Use of CDW in Relation to Its Constituents
2.5. Limitations on CDW Composition in Relation to Its Applications
3. Recycled CDW Materials Applications
3.1. Sand Production
3.2. Use of CDW for Pavements/Roads Construction
3.3. Ready Mix Concrete
3.4. Concrete Blocks
3.5. Cement
3.6. Ceramics and Bricks
3.7. Environmental Application for CDW—Adsorbent Material to Clean Up Polluted Waters
4. Conclusions, Remarks and Future Trends
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Menegaki, M.; Damigos, D. A review on current situation and challenges of construction and demolition waste management. Curr. Opin. Green Sustain. Chem. 2018, 13, 8–15. [Google Scholar] [CrossRef]
- Deloitte. Study on Resource Efficient Use of Mixed Wastes, Improving management of construction and demolition waste—Final Report. Prep. Eur. Comm. DG ENV 2017, 2, 152–162. [Google Scholar]
- Monier, V.; Hesstin, M.; Impériale, A.; Prat, L.; Hobbs, G.; Ramos, K.A.M. Resource Efficient Use of Mixed Wastes: Improving Management of Construction and Demolition Waste; European Union: Luxembourg, 2017; ISBN 978-92-79-76478-3. [Google Scholar]
- Cardoso, R.; Silva, R.V.; de Brito, J.; Dhir, R. Use of recycled aggregates from construction and demolition waste in geotechnical applications: A literature review. Waste Manag. 2016, 49, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Directive, E. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. Off. J. Eur. Union 2008, 312, 3. [Google Scholar]
- Huang, B.; Wang, X.; Kua, H.; Geng, Y.; Bleischwitz, R.; Ren, J. Construction and demolition waste management in China through the 3R principle. Resour. Conserv. Recycl. 2018, 129, 36–44. [Google Scholar] [CrossRef]
- Jones, R.; Zheng, L.; Yerramala, A.; Rao, K.S. Use of recycled and secondary aggregates in foamed concretes. Mag. Concr. Res. 2012, 64, 513–525. [Google Scholar] [CrossRef]
- Favaretto, P.; Hidalgo, G.E.N.; Sampaio, C.H.; Silva, R.D.A.; Lermen, R.T. Characterization and Use of Construction and Demolition Waste from South of Brazil in the Production of Foamed Concrete Blocks. Appl. Sci. 2017, 7, 1090. [Google Scholar] [CrossRef] [Green Version]
- Poon, C.S.; Lam, C.S. The effect of aggregate-to-cement ratio and types of aggregates on the properties of pre-cast concrete blocks. Cem. Concr. Compos. 2008, 30, 283–289. [Google Scholar] [CrossRef]
- Allahverdi, A.; Kani, E.N. Construction wastes as raw materials for geopolymer binders. Int. J. Civ. Eng. 2009, 7, 154–160. [Google Scholar]
- Komnitsas, K.; Zaharaki, D.; Vlachou, A.; Bartzas, G.; Galetakis, M. Effect of synthesis parameters on the quality of construction and demolition wastes (CDW) geopolymers. Adv. Powder Technol. 2015, 26, 368–376. [Google Scholar] [CrossRef] [Green Version]
- Poon, C.-S.; Kou, S.-C.; Wan, H.-W.; Etxeberria, M. Properties of concrete blocks prepared with low grade recycled aggregates. Waste Manag. 2009, 29, 2369–2377. [Google Scholar] [CrossRef]
- Vásquez, A.; Cárdenas, V.; Robayo, R.A.; de Gutiérrez, R.M. Geopolymer based on concrete demolition waste. Adv. Powder Technol. 2016, 27, 1173–1179. [Google Scholar] [CrossRef]
- Vieira, C.S.; Pereira, P.M. Use of recycled construction and demolition materials in geotechnical applications: A review. Resour. Conserv. Recycl. 2015, 103, 192–204. [Google Scholar] [CrossRef]
- Yeung, A.T.; Mok, K.; Tham, L.; Lee, P.; Pei, G. Use of inert C&D materials for seawall foundation: A field-scale pilot test. Resour. Conserv. Recycl. 2006, 47, 375–393. [Google Scholar] [CrossRef]
- Rahardjo, H.; Satyanaga, A.; Harnas, F.R.; Leong, E.C. Use of Dual Capillary Barrier as Cover System for a Sanitary Landfill in Singapore. Indian Geotech. J. 2016, 46, 228–238. [Google Scholar] [CrossRef]
- Rahman, M.A.; Imteaz, M.; Arulrajah, A.; Disfani, M.M. Suitability of recycled construction and demolition aggregates as alternative pipe backfilling materials. J. Clean. Prod. 2014, 66, 75–84. [Google Scholar] [CrossRef]
- Pourkhorshidi, S.; Sangiorgi, C.; Torreggiani, D.; Tassinari, P. Using Recycled Aggregates from Construction and Demolition Waste in Unbound Layers of Pavements. Sustainability 2020, 12, 9386. [Google Scholar] [CrossRef]
- Tataranni, P.; Sangiorgi, C.; Simone, A.; Vignali, V.; Lantieri, C.; Dondi, G. A laboratory and field study on 100% Recycled Cement Bound Mixture for base layers. Int. J. Pavement Res. Technol. 2018, 11, 427–434. [Google Scholar] [CrossRef]
- Gomez-Meijide, B.; Perez, A.P.I. Recycled construction and demolition waste in Cold Asphalt Mixtures: Evolutionary properties. J. Clean. Prod. 2016, 112, 588–598. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.V.; De Brito, J.; Dhir, R.K. Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr. Build. Mater. 2014, 65, 201–217. [Google Scholar] [CrossRef]
- Jiménez, J.R. Recycled aggregates (RAs) for roads. In Handbook of Recycled Concrete and Demolition Waste; Elsevier: Amsterdam, The Netherlands, 2013; pp. 351–377. [Google Scholar]
- Zhang, R.; Panesar, D.K. Water absorption of carbonated reactive MgO concrete and its correlation with the pore structure. J. CO2 Util. 2018, 24, 350–360. [Google Scholar] [CrossRef]
- Eckert, M.; Oliveira, M.J. Mitigation of the negative effects of recycled aggregate water absorption in concrete technology. Constr. Build. Mater. 2017, 133, 416–424. [Google Scholar] [CrossRef]
- Belin, P.; Habert, G.; Thiery, M.; Roussel, N. Cement paste content and water absorption of recycled concrete coarse aggregates. Mater. Struct. 2013, 47, 1451–1465. [Google Scholar] [CrossRef]
- Quattrone, M.; Cazacliu, B.; Angulo, S.; Hamard, E.; Cothenet, A. Measuring the water absorption of recycled aggregates, what is the best practice for concrete production? Constr. Build. Mater. 2016, 123, 690–703. [Google Scholar] [CrossRef]
- García-González, J.; Rodríguez-Robles, D.; Juan-Valdés, A.; Morán-del Pozo, J.M.; Guerra-Romero, M.I. Pre-saturation technique of the recycled aggregates: Solution to the water absorption drawback in the recycled concrete manufacture. Materials 2014, 7, 6224–6236. [Google Scholar] [CrossRef] [Green Version]
- Joseph, M.; Boehme, L.; Sierens, Z.; Vandewalle, L. Water absorption variability of recycled concrete aggregates. Mag. Concr. Res. 2015, 67, 592–597. [Google Scholar] [CrossRef]
- Peng, G.-F.; Huang, Y.Z.; Wang, H.S.; Zhang, J.F.; Liu, Q.B. Mechanical Properties of Recycled Aggregate Concrete at Low and High Water/Binder Ratios. Adv. Mater. Sci. Eng. 2013, 2013, 842929. [Google Scholar] [CrossRef] [Green Version]
- Agrela, F.; de Juan, M.S.; Ayuso, J.; Geraldes, V.; Jiménez, J. Limiting properties in the characterisation of mixed recycled aggregates for use in the manufacture of concrete. Constr. Build. Mater. 2011, 25, 3950–3955. [Google Scholar] [CrossRef] [Green Version]
- Pedro, D.; de Brito, J.; Evangelista, L. Influence of the use of recycled concrete aggregates from different sources on structural concrete. Constr. Build. Mater. 2014, 71, 141–151. [Google Scholar] [CrossRef]
- De Brito, J.; Saikia, N. Construction and Demolition Waste Aggregates. In Smart and Sustainable Planning for Cities and Regions; Springer: London, UK, 2013; pp. 81–113. [Google Scholar]
- De Juan, M.S.; Gutiérrez, P.A. Study on the influence of attached mortar content on the properties of recycled concrete aggregate. Constr. Build. Mater. 2009, 23, 872–877. [Google Scholar] [CrossRef]
- Angulo, S.C.; Carrijo, P.M.; Figueiredo, A.D.; Chaves, A.P.; John, V.M. On the classification of mixed construction and demolition waste aggregate by porosity and its impact on the mechanical performance of concrete. Mater. Struct. 2009, 43, 519–528. [Google Scholar] [CrossRef]
- Hansen, T.; Narud, H. Strength of recycled concrete made from crushed concrete coarse aggregate. Concr. Int. 1983, 5, 79–83. [Google Scholar]
- Andreu, G.; Miren, E. Experimental analysis of properties of high perfor-mance recycled aggregate concrete. Constr. Build. Mater. 2014, 52, 227–235. [Google Scholar] [CrossRef]
- Nagataki, S.; Gokce, A.; Saeki, T.; Hisada, M. Assessment of recycling process induced damage sensitivity of recycled concrete aggregates. Cem. Concr. Res. 2004, 34, 965–971. [Google Scholar] [CrossRef]
- Topçu, I.B.; Şengel, S. Properties of concretes produced with waste concrete aggregate. Cem. Concr. Res. 2004, 34, 1307–1312. [Google Scholar] [CrossRef]
- Limbachiya, M.C.; Leelawat, T.; Dhir, R.K. Use of recycled concrete aggregate in high-strength concrete. Mater. Struct. 2000, 33, 574–580. [Google Scholar] [CrossRef]
- Martínez-Lage, I.; Vázquez-Burgo, P.; Velay-Lizancos, M. Sustainability evaluation of con-cretes with mixed recycled aggregate based on holistic approach: Technical, economic and environmental analysis. Waste Manag. 2020, 104, 9–19. [Google Scholar] [CrossRef]
- Debieb, F.; Kenai, S. The use of coarse and fine crushed bricks as aggregate in concrete. Constr. Build. Mater. 2008, 22, 886–893. [Google Scholar] [CrossRef]
- Khalaf, F.M. Using Crushed Clay Brick as Coarse Aggregate in Concrete. J. Mater. Civ. Eng. 2006, 18, 518–526. [Google Scholar] [CrossRef]
- Cahim, P. Mechanical properties of brick aggregate concrete. Constr. Build. Mater. 2009, 23, 1292–1297. [Google Scholar] [CrossRef]
- Richerson, D.W.; Lee, W.E. Modern Ceramic Engineering: Properties, Processing, and Use in Design, 4th ed.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Khoury, E.; Cazacliu, B.; Cothenet, A.; Remond, S. Homogenization process of field samples of recycled aggregates. Constr. Build. Mater. 2020, 243, 117991. [Google Scholar] [CrossRef]
- Galvín, A.P.; Ayuso, J.; Jiménez, J.R.; Agrela, F. Comparison of batch leaching tests and influence of pH on the release of metals from construction and demolition wastes. Waste Manag. 2012, 32, 88–95. [Google Scholar] [CrossRef]
- Galvín, A.P.; Ayuso, J.; Agrela, F.; Barbudo, A.; Jiménez, J.R. Analysis of leaching procedures for environmental risk assess-ment of recycled aggregate use in unpaved roads. Constr. Build. Mater. 2013, 40, 1207–1214. [Google Scholar] [CrossRef]
- Engelsen, C.J.; van der Sloot, H.A.; Wibetoe, G.; Petkovic, G.; Stoltenberg-Hansson, E.; Lund, W. Release of major elements from recycled concrete aggregates and geochemical modelling. Cem. Concr. Res. 2009, 39, 446–459. [Google Scholar] [CrossRef]
- Chrysochoou, M.; Dermatas, D. Evaluation of ettringite and hydrocalumite formation for heavy metal immobilization: Literature review and experimental study. J. Hazard. Mater. 2006, 136, 20–33. [Google Scholar] [CrossRef]
- Engelsen, C.J.; van der Sloot, H.A.; Wibetoe, G.; Justnes, H.; Lund, W.; Stoltenberg-Hansson, E. Leaching characterisation and geochemical modelling of minor and trace elements released from recycled concrete aggregates. Cem. Concr. Res. 2010, 40, 1639–1649. [Google Scholar] [CrossRef] [Green Version]
- Hansen, T. Recycling of Demolished Concrete and Masonry; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Huang, B.; Shu, X.; Burdette, E.G. Mechanical properties of concrete containing recycled asphalt pavements. Mag. Concr. Res. 2006, 58, 313–320. [Google Scholar] [CrossRef]
- Aggregates for Concrete; British Standards Institution: London, UK, 2002; BS EN 2002, 12620.
- Coelho, A.; De Brito, J. Preparation of concrete aggregates from construction and demolition waste (CDW). In Handbook of Recycled Concrete and Demolition Waste; Elsevier: Amsterdam, The Netherlands, 2013; pp. 210–245. [Google Scholar]
- Tests for Chemical Properties of Aggregates; British Standards Institution: London, UK, 2009; BS EN 1744-1:2009+A1:2012.
- Agrela, F.; Barbudo, A.; Ramírez, A.; Ayuso, J.; Carvajal, M.D.; Jiménez, J.R. Construction of road sections using mixed recycled aggregates treated with cement in Malaga, Spain. Resour. Conserv. Recycl. 2012, 58, 98–106. [Google Scholar] [CrossRef]
- Jiménez, J.R.; Ayuso, J.; Agrela, F.; López, M.; Galvín, A.P. Utilisation of unbound recycled aggregates from selected CDW in unpaved rural roads. Resour. Conserv. Recycl. 2012, 58, 88–97. [Google Scholar] [CrossRef]
- Agrela, F.; Cabrera, M.; Galvín, A.; Barbudo, A.; Ramirez, A. Influence of the sulphate content of recycled aggregates on the properties of cement-treated granular materials using Sulphate-Resistant Portland Cement. Constr. Build. Mater. 2014, 68, 127–134. [Google Scholar] [CrossRef]
- Neville, A. The confused world of sulphate attack on concrete. Cem. Concr. Res. 2004, 34, 1275–1296. [Google Scholar] [CrossRef]
- Shehata, M.H.; Christidis, C.; Mikhaiel, W.; Rogers, C.; Lachemi, M. Reactivity of reclaimed concrete aggregate produced from concrete affected by alkali–silica reaction. Cem. Concr. Res. 2010, 40, 575–582. [Google Scholar] [CrossRef]
- Adams, M.P. Alkali-Silica Reaction in Concrete Containing Recycled Concrete Aggregates. Master’s Thesis, Oregon State University, Corvallis, OR, USA, 2012. [Google Scholar]
- Stanton, T.E. Expansion of Concrete through Reaction between Cement and Aggregate. Trans. Am. Soc. Civ. Eng. 1942, 107, 54–84. [Google Scholar] [CrossRef]
- Wang, H.; Gillott, J. Mechanism of alkali-silica reaction and the significance of calcium hydroxide. Cem. Concr. Res. 1991, 21, 647–654. [Google Scholar] [CrossRef]
- Dron, R.; Brivot, F.; Chaussadent, T. Mécanisme de la réaction alcali-silice. Bull. Liaison Lab. Ponts Chaussées 1998, 214, 61–68. [Google Scholar]
- Prezzi, M.; Monteiro, J.M.; Sposito, G. The alkali-silica reaction, Part 1: Use of the double layer theory to explain the behaviour of reaction-products gels. Aci Mater. J. 1997, 94, 10–17. [Google Scholar]
- Glasser, L. Osmotic pressure and the swelling of gels. Cem. Concr. Res. 1979, 9, 515–517. [Google Scholar] [CrossRef]
- Hong, S.H.; Glasser, F.P. Alkali sorption by C-S-H and C-A-S-H gels: Part II Role of alumina. Cem. Concr. Res. 2002, 32, 1101–1111. [Google Scholar] [CrossRef]
- Kawabata, Y.; Yamada, K. Evaluation of Alkalinity of Pore Solution Based on the Phase Composition of Cement Hydrates with Supplementary Cementitious Materials and its Relation to Suppressing ASR Expansion. J. Adv. Concr. Technol. 2015, 13, 538–553. [Google Scholar] [CrossRef] [Green Version]
- Hajimohammadi, A.; Ngo, T.; Kashani, A. Glass waste versus sand as aggregates: The characteristics of the evolving geopolymer binders. J. Clean. Prod. 2018, 193, 593–603. [Google Scholar] [CrossRef]
- Sathiparan, N.; De Zoysa, H. The effects of using agricultural waste as partial substitute for sand in cement blocks. J. Build. Eng. 2018, 19, 216–227. [Google Scholar] [CrossRef]
- UNEP 2019. Sand and Sustainability: Finding New Solutions for Environmental Governance of Global Sand Resources; GRID-Geneva. United Nations Env. Programme: Geneva, Switzerland, 2019. [Google Scholar]
- Silva, J.; de Brito, J.; Veiga, R. Incorporation of fine ceramics in mortars. Constr. Build. Mater. 2009, 23, 556–564. [Google Scholar] [CrossRef]
- Martínez, I.; Etxeberria, M.; Pavón, E.; Díaz, N. A comparative analysis of the properties of recycled and natural aggregate in masonry mortars. Constr. Build. Mater. 2013, 49, 384–392. [Google Scholar] [CrossRef]
- Evangelista, L.; de Brito, L. Durability performance of concrete made with fine recycled concrete aggregates. Cem. Concr. Compos. 2010, 32, 9–14. [Google Scholar] [CrossRef]
- Ulsen, C.; Antoniassi, J.L.; Martins, I.M.; Kahn, H. High quality recycled sand from mixed CDW e is that possible? J. Mat. Res. Technol. 2021, 12, 29–42. [Google Scholar] [CrossRef]
- Ahn, J.-W.; Kim, H.-S.; Han, G.-C. Recovery of Aggregates from Waste Concrete by Heating and Grinding. Geosyst. Eng. 2001, 4, 117–122. [Google Scholar] [CrossRef]
- Quattrone, M.; Angulo, S.C.; John, V.M. Energy and CO2 from high performance recycled aggregate production. Resour. Conserv. Recycl. 2014, 90, 21–33. [Google Scholar] [CrossRef]
- Leite, F.D.C.; Motta, R.D.S.; Vasconcelos, K.L.; Bernucci, L. Laboratory evaluation of recycled construction and demolition waste for pavements. Constr. Build. Mater. 2011, 25, 2972–2979. [Google Scholar] [CrossRef]
- Ekanayake, L.L.; Ofori, G. Building waste assessment score: Design-based tool. Build. Environ. 2004, 39, 851–861. [Google Scholar] [CrossRef]
- Ulubeyli, S.; Kazaz, A.; Arslan, V. Construction and Demolition Waste Recycling Plants Revisited: Management Issues. Procedia Eng. 2017, 172, 1190–1197. [Google Scholar] [CrossRef]
- Molenaar, A.A.; van Niekerk, A.A. Effects of gradation, composition, and degree of compaction on the mechanical characteristics of recycled unbound materials. Transp. Res. Rec. 2002, 1787, 73–82. [Google Scholar] [CrossRef]
- Bennert, T.; Papp, W.J.; Maher, A.; Gucunski, N. Utilization of Construction and Demolition Debris Under Traffic-Type Loading in Base and Subbase Applications. Transp. Res. Rec. J. Transp. Res. Board 2000, 1714, 33–39. [Google Scholar] [CrossRef]
- Vázquez, E. Progress of Recycling in the Built Environment: Final Report of the RILEM Technical Committee 217-PRE; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 8. [Google Scholar]
- Vegas, I.; Ibañez, J.; José, J.S.; Urzelai, A. Construction demolition wastes, Waelz slag and MSWI bottom ash: A comparative technical analysis as material for road construction. Waste Manag. 2008, 28, 565–574. [Google Scholar] [CrossRef]
- Vegas, I.; Ibañez, J.; Lisbona, A.; de Cortazar, A.S.; Frías, M. Pre-normative research on the use of mixed recycled aggregates in unbound road sections. Constr. Build. Mater. 2011, 25, 2674–2682. [Google Scholar] [CrossRef]
- Tarsi, G.; Tataranni, P.; Sangiorgi, C. The Challenges of Using Reclaimed Asphalt Pavement for New Asphalt Mixtures: A Review. Materials 2020, 13, 4052. [Google Scholar] [CrossRef]
- Mousa, E.; Azam, A.; El-Shabrawy, M.; El-Badawy, S. Laboratory characterization of reclaimed asphalt pavement for road construction in Egypt. Can. J. Civ. Eng. 2017, 44, 417–425. [Google Scholar] [CrossRef] [Green Version]
- Vidal, R.; Moliner, E.; Martínez, G.; Rubio, M.C. Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement. Resour. Conserv. Recycl. 2013, 74, 101–114. [Google Scholar] [CrossRef]
- Edil, T.B. Specifications and Recommendations for Recycled Materials Used as Unbound Base Course; University of Wisconsin-Madison: Madison, WI, USA, 2011. [Google Scholar]
- Cosentino, P.J.; Kalajian, E.H.; Shieh, C.S.; Mathurin, W.J.K.; Gomez, F.; Cleary, E.D.; Treeratrakoon, A. Developing Specifications for Using Recycled Asphalt Pavement as Base, Subbase or General Fill Materials, Phase II. Report No. FL/DOT/RMC/06650-7754. 2003. Available online: https://trid.trb.org/view/660611 (accessed on 12 January 2021).
- Behera, M.; Bhattacharyya, S.; Minocha, A.; Deoliya, R.; Maiti, S. Recycled aggregate from C&D waste & its use in concrete—A breakthrough towards sustainability in construction sector: A review. Constr. Build. Mater. 2014, 68, 501–516. [Google Scholar] [CrossRef]
- Bui, N.K.; Satomi, T.; Takahashi, H. Mechanical properties of concrete containing 100% treated coarse recycled concrete aggregate. Constr. Build. Mater. 2018, 163, 496–507. [Google Scholar] [CrossRef]
- Shi, C.; Li, Y.; Zhang, J.; Li, W.; Chong, L.; Xie, Z. Performance enhancement of recycled concrete aggregate—A review. J. Clean. Prod. 2016, 112, 466–472. [Google Scholar] [CrossRef]
- Bravo, M.; de Brito, J.; Evangelista, L.; Pacheco, J. Durability and shrinkage of concrete with CDW as recycled aggregates: Benefits from superplasticizer’s incorporation and influence of CDW composition. Constr. Build. Mater. 2018, 168, 818–830. [Google Scholar] [CrossRef]
- Lima, P.R.L.; Leite, M.B.; Santiago, E.Q.R. Recycled lightweight concrete made from footwear industry waste and CDW. Waste Manag. 2010, 30, 1107–1113. [Google Scholar] [CrossRef]
- Bravo, M.; De Brito, J.; Evangelista, L.; Pacheco, J. Superplasticizer’s efficiency on the mechanical properties of recycled aggregates concrete: Influence of recycled aggregates composition and incorporation ratio. Constr. Build. Mater. 2017, 153, 129–138. [Google Scholar] [CrossRef]
- Butler, L.J.; West, J.S.; Tighe, S.L. Effect of Recycled Concrete Aggregate Properties on Mixture Proportions of Structural Concrete. Transp. Res. Rec. J. Transp. Res. Board 2012, 2290, 105–114. [Google Scholar] [CrossRef]
- Alexandridou, C.; Angelopoulos, G.N.; Coutelieris, F.A. Mechanical and durability performance of concrete produced with recycled aggregates from Greek construction and demolition waste plants. J. Clean. Prod. 2018, 176, 745–757. [Google Scholar] [CrossRef]
- Alhozaimy, A.M. Effect of absorption of limestone aggregates on strength and slump loss of concrete. Cem. Concr. Compos. 2009, 31, 470–473. [Google Scholar] [CrossRef]
- Mefteh, H.; Kebaïli, O.; Oucief, H.; Berredjem, L.; Arabi, N. Influence of moisture conditioning of recycled aggregates on the properties of fresh and hardened concrete. J. Clean. Prod. 2013, 54, 282–288. [Google Scholar] [CrossRef]
- Lu, B.; Shi, C.; Cao, Z.; Guo, M.; Zheng, J. Effect of carbonated coarse recycled con-crete aggregate on the properties and microstructure of recycled concrete. J. Clean. Prod. 2019, 233, 421–428. [Google Scholar] [CrossRef]
- Sagoe-Crentsil, K.; Brown, T.; Taylor, A. Performance of concrete made with commercially produced coarse recycled concrete aggregate. Cem. Concr. Res. 2001, 31, 707–712. [Google Scholar] [CrossRef]
- Fathifazl, G.; Razaqpur, A.G.; Isgor, O.B.; Abbas, A.; Fournier, B.; Foo, S. Creep and drying shrinkage characteristics of concrete produced with coarse recycled concrete aggregate. Cem. Concr. Compos. 2011, 33, 1026–1037. [Google Scholar] [CrossRef]
- Buyle-Bodin, F.; Hadjieva-Zaharieva, R. Influence of industrially produced recycled ag-gregates on flow properties of concrete. Mater. Struct. 2002, 35, 504–509. [Google Scholar] [CrossRef]
- Henkensiefken, R.; Castro, J.; Bentz, D.; Nantung, T.; Weiss, J. Water absorption in internally cured mortar made with water-filled lightweight aggregate. Cem. Concr. Res. 2009, 39, 883–892. [Google Scholar] [CrossRef] [Green Version]
- Golias, M.; Castro, J.; Weiss, J. The influence of the initial moisture content of light-weight aggregate on internal curing. Constr. Build. Mater. 2012, 35, 52–62. [Google Scholar] [CrossRef]
- Corinaldesi, V.; Moricon, G. Influence of mineral additions on the performance of 100% recycled aggregate concrete. Constr. Build. Mater. 2009, 23, 2869–2876. [Google Scholar] [CrossRef]
- Tam, V.W.; Tam, C.M. Crushed aggregate production from centralized combined and individual waste sources in Hong Kong. Constr. Build. Mater. 2007, 21, 879–886. [Google Scholar] [CrossRef] [Green Version]
- Bravo, M.; De Brito, J.; Pontes, J.; Evangelista, L. Durability performance of concrete with recycled aggregates from construction and demolition waste plants. Constr. Build. Mater. 2015, 77, 357–369. [Google Scholar] [CrossRef]
- Bao, J.; Li, S.; Zhang, P.; Ding, X.; Xue, S.; Cui, Y.; Zhao, T. Influence of the incorporation of recycled coarse aggregate on water absorption and chloride penetration into concrete. Constr. Build. Mater. 2020, 239, 117845. [Google Scholar] [CrossRef]
- Guo, H.; Shi, C.; Guan, X.; Zhu, J.; Ding, Y.; Ling, T.-C.; Zhang, H.; Wang, Y. Durability of recycled aggregate concrete—A review. Cem. Concr. Compos. 2018, 89, 251–259. [Google Scholar] [CrossRef]
- Alexander, M.G. Woodhead Publishing Series in Civil and Structural Engineering; CRC Press: Boca Raton, FL, USA, 2019; pp. 87–113. [Google Scholar]
- Li, X.; Gress, D.L. Mitigating Alkali–Silica Reaction in Concrete Containing Recycled Concrete Aggregate. Transp. Res. Rec. J. Transp. Res. Board 2006, 1979, 30–35. [Google Scholar] [CrossRef]
- Abid, S.R.; Nahhab, A.H.; Al-aayedi, H.K.H.; Nuhair, A.M. Expansion and strength properties of concrete containing contaminated recycled concrete aggregate. Case Stud. Constr. Mater. 2018, 9, e00201. [Google Scholar] [CrossRef]
- Delobel, F.; Bulteel, D.; Mechling, J.; LeComte, A.; Cyr, M.; Rémond, S. Application of ASR tests to recycled concrete aggregates: Influence of water absorption. Constr. Build. Mater. 2016, 124, 714–721. [Google Scholar] [CrossRef]
- Meng, Y.; Ling, T.-C.; Mo, K.H. Recycling of wastes for value-added applications in concrete blocks: An overview. Resour. Conserv. Recycl. 2018, 138, 298–312. [Google Scholar] [CrossRef]
- Matar, P.; El Dalati, R. Using recycled concrete aggregates in precast concrete hollow blocks. Mater. Werkst. 2012, 43, 388–391. [Google Scholar] [CrossRef]
- Matwiss, W. Use of wastes derived from earthquakes for the production of concrete masonry partition wall blocks. Waste Manag. 2011, 31, 1859–1866. [Google Scholar]
- Kou, S.-C.; Zhan, B.-J.; Poon, C.-S. Properties of partition wall blocks prepared with fresh concrete wastes. Constr. Build. Mater. 2012, 36, 566–571. [Google Scholar] [CrossRef]
- World Business Council for Sustainable Development and International Energy Agency. Cement Technology Roadmap 2009: Carbon Emissions Reductions up to 2050; World Business Council for Sustainable Development and International Energy Agency: Geneva, Switzerland, 2009. [Google Scholar]
- Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar] [CrossRef]
- Miller, S.A.; John, V.M.; Pacca, S.A.; Horvath, A. Carbon dioxide reduction potential in the global cement industry by 2050. Cem. Concr. Res. 2018, 114, 115–124. [Google Scholar] [CrossRef]
- Pepe, M. A Conceptual Model for Designing Recycled Aggregate Concrete for Structural Applications; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Schneider, M. The cement industry on the way to a low-carbon future. Cem. Concr. Res. 2019, 124, 105792. [Google Scholar] [CrossRef]
- Jani, Y.; Hogland, W. Waste glass in the production of cement and concrete—A review. J. Environ. Chem. Eng. 2014, 2, 1767–1775. [Google Scholar] [CrossRef]
- Schoon, J.; De Buysser, K.; Van Driessche, I.; De Belie, N. Fines extracted from recycled concrete as alternative raw material for Portland cement clinker production. Cem. Concr. Compos. 2015, 58, 70–80. [Google Scholar] [CrossRef]
- Schoon, J.; Van Der Heyden, L.; Eloy, P.; Gaigneux, E.M.; De Buysser, K.; Van Driessche, I.; De Belie, N. Waste fibrecement: An interesting alternative raw material for a sustainable Portland clinker production. Constr. Build. Mater. 2012, 36, 391–403. [Google Scholar] [CrossRef]
- Allahverdi, A.; Kani, E. Use of Construction and Demolition Waste (CDW) for Alkali-Activated or Geopolymer Cements. Handbook of Recycled Concrete and Demolition Waste; Woodhead publishing: Cambridge, UK, 2013; pp. 439–475. [Google Scholar]
- Puertas, F.; Barba, A.; Gazulla, M.F.; Gómez, M.P.; Palacios, M.; Martínez-Ramírez, S. Residuos cerámicos para su posible uso como materia prima en la fabricación de clínker de cemento Portland: Caracterización y activación alcalina. Materiales De Construcción 2006, 56, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Cui, H.; An, H.; Tao, D.; Xu, Y.; Zhai, J.; Li, Q. Synthesis and thermal behavior of geopolymer-type material from waste ceramic. Constr. Build. Mater. 2013, 49, 281–287. [Google Scholar] [CrossRef]
- Duxson, P.; Provis, J.L.; Lukey, G.C.; van Deventer, J.S. The role of inorganic polymer technology in the development of ‘green concrete’. Cem. Concr. Res. 2007, 37, 1590–1597. [Google Scholar] [CrossRef]
- Luukkonen, T.; Abdollahnejad, Z.; Yliniemi, J.; Kinnunen, P.; Illikainen, M. One-part alkali-activated materials: A review. Cem. Concr. Res. 2018, 103, 21–34. [Google Scholar] [CrossRef]
- Hajimohammadi, A.; van Deventer, J.S. Characterisation of one-part geopolymer binders made from fly ash. Waste Biomass Valorization 2017, 8, 225–233. [Google Scholar] [CrossRef]
- Boltakova, N.; Faseeva, G.; Kabirov, R.; Nafikov, R.; Zakharov, Y. Utilization of inorganic industrial wastes in producing construction ceramics. Review of Russian experience for the years 2000–2015. Waste Manag. 2017, 60, 230–246. [Google Scholar] [CrossRef]
- Bianchini, G.; Marrocchino, E.; Tassinari, R.; Vaccaro, C. Recycling of construction and demolition waste materials: A chemical–mineralogical appraisal. Waste Manag. 2005, 25, 149–159. [Google Scholar] [CrossRef]
- Acchar, W.; Silva, J.E.; Castanho, S.R.M.; Segadaes, A.M. Properties of Clay-Based Ceramics Added with Construction and Demolition Waste. Available online: http://repositorio.ipen.br/bitstream/handle/123456789/13188/14823.pdf?sequence=1 (accessed on 12 January 2021).
- Fiala, L.; Konrád, P.; Fořt, J.; Keppert, M.; Černý, R. Application of ceramic waste in brick blocks with enhanced acoustic properties. J. Clean. Prod. 2020, 261, 121185. [Google Scholar] [CrossRef]
- Gencel, O.; Erdugmus, E.; Sutcu, M.; Oren, O.H. Effects of concrete waste on characteristics of structural fired clay bricks. Constr. Build. Mater. 2020, 255, 119362. [Google Scholar] [CrossRef]
- Acchar, W.; Silva, J.E.; Segadães, A.M. Increased added value reuse of construction waste in clay based building ceramics. Adv. Appl. Ceram. 2013, 112, 487–493. [Google Scholar] [CrossRef]
- Gaspareto, M.G.T.; Teixeira, S.R. Utilização de resíduo de construção civil e demolição (RCD) como material não plástico para a produção de tijolos cerâmicos. Cerâmica Ind. 2017, 22, 40–46. [Google Scholar] [CrossRef]
- Reis, G.S.d.; Cazacliu, B.G.; Cothenet, A.; Poullain, P.; Wilhelm, M.; Sampaio, C.H.; Lima, E.C.; Ambros, W.; Torrenti, J.-M. Fabrication, microstructure, and properties of fired clay bricks using construction and demolition waste sludge as the main additive. J. Clean. Prod. 2020, 258, 120733. [Google Scholar] [CrossRef]
- Egemose, S.; Sønderup, M.J.; Beinthin, M.V.; Reitzel, K.; Hoffmann, C.C.; Flindt, M.R. Crushed concrete as a phosphate binding material: A potential new management tool. J. Environ. Qual. 2012, 41, 647–653. [Google Scholar] [CrossRef]
- Sasaki, T.; Iizuka, A.; Watanabe, M.; Hongo, T.; Yamasaki, A. Preparation and performance of arsenate (V) adsorbents derived from concrete wastes. Waste Manag. 2014, 34, 1829–1835. [Google Scholar] [CrossRef]
- Wang, X.; Chen, J.; Kong, Y.; Shi, X. Sequestration of phosphorus from wastewater by cement-based or alternative cementitious materials. Water Res. 2014, 62, 88–96. [Google Scholar] [CrossRef]
- Martemianov, D.; Xie, B.-B.; Yurmazova, T.; Khaskelberg, M.; Wang, F.; Wei, C.-H.; Preis, S. Cellular concrete-supported cost-effective adsorbents for aqueous arsenic and heavy metals abatement. J. Environ. Chem. Eng. 2017, 5, 3930–3941. [Google Scholar] [CrossRef]
- dos Reis, G.S.; Thue, P.S.; Cazacliu, B.G.; Lima, E.C.; Sampaio, C.H.; Quattrone, M.; Ovsyannikova, E.; Kruse, A.; Dotto, G.L. Effect of concrete carbonation on phosphate removal through adsorption process and its potential application as fertilizer. J. Clean. Prod. 2020, 256, 120416. [Google Scholar] [CrossRef]
- Kagne, S.; Jagtap, S.; Dhawade, P.; Kamble, S.; Devotta, S.; Rayalu, S. Hydrated cement: A promising adsorbent for the removal of fluoride from aqueous solution. J. Hazard. Mater. 2008, 154, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Wheatley, A. Mechanisms of phosphorus removal by recycled crushed concrete. Int. J. Environ. Res. Public Health 2018, 15, 357. [Google Scholar] [CrossRef] [Green Version]
- Mondal, M.; Manoli, K.; Ray, A.K. Removal of arsenic(III) from aqueous solution by concrete-based adsorbents. Can. J. Chem. Eng. 2019, 98, 353–359. [Google Scholar] [CrossRef] [Green Version]
- Kang, K.; Lee, C.-G.; Choi, J.-W.; Hong, S.-G.; Park, S.-J. Application of Thermally Treated Crushed Concrete Granules for the Removal of Phosphate: A Cheap Adsorbent with High Adsorption Capacity. Water Air Soil Pollut. 2017, 228, 8. [Google Scholar] [CrossRef]
- Dos Reis, G.S.; Cazacliu, B.G.; Correa, C.R.; Ovsyannikova, E.; Kruse, A.; Sampaio, C.H.; Lima, E.C.; Dotto, G.L. Adsorption and recovery of phosphate from aqueous solution by the construction and demolition wastes sludge and its potential use as phosphate-based fertiliser. J. Environ. Chem. Eng. 2020, 8, 103605. [Google Scholar] [CrossRef]
- Caicedo, D.F.; dos Reis, G.S.; Lima, E.C.; De Brum, I.A.; Thue, P.S.; Cazacliu, B.G.; Lima, D.R.; dos Santos, A.H.; Dotto, G.L. Efficient adsorbent based on construction and demolition wastes functionalized with 3-aminopropyltriethoxysilane (APTES) for the removal ciprofloxacin from hospital synthetic effluents. J. Environ. Chem. Eng. 2020, 8, 103875. [Google Scholar] [CrossRef]
- Sasaki, T.; Sakai, Y.; Hongo, T.; Iizuka, A.; Yamasaki, A. Preparation of a Solid Adsorbent Derived from Concrete Sludge and its Boron Removal Performance. Ind. Eng. Chem. Res. 2012, 51, 5813–5817. [Google Scholar] [CrossRef]
- Shyamal, D.S.; Ghosh, P.K. Efficiency of Portland Pozzolana Cement as an adsorbent in removing excess fluoride from groundwater. Groundw. Sustain. Dev. 2019, 9, 100248. [Google Scholar] [CrossRef]
- Kang, S.; Lee, J.; Park, S.-M.; Alessi, D.S.; Baek, K. Adsorption characteristics of cesium onto calcium-silicate-hydrate in concrete powder and block. Chemosphere 2020, 259, 127494. [Google Scholar] [CrossRef]
- Manjunath, S.V.; Baghel, R.S.; Kumar, M. Performance evaluation of cement–carbon composite for adsorptive removal of acidic and basic dyes from single and multi-component systems. Environ. Technol. Innov. 2019, 16, 100478. [Google Scholar] [CrossRef]
- Lim, W.-R.; Kim, S.W.; Lee, C.-H.; Choi, E.-K.; Oh, M.H.; Seo, S.N.; Park, H.-J.; Hamm, S.-Y. Performance of composite mineral adsorbents for removing Cu, Cd, and Pb ions from polluted water. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Dos Reis, G.S.; Bin Mahbub, M.K.; Wilhelm, M.; Lima, E.C.; Sampaio, C.H.; Saucier, C.; Dias, S.L.P. Activated carbon from sewage sludge for removal of sodium diclofenac and nimesulide from aqueous solutions. Korean J. Chem. Eng. 2016, 33, 3149–3161. [Google Scholar] [CrossRef]
- Dos Reis, G.S.; Adebayo, M.A.; Sampaio, C.H.; Lima, E.C.; Thue, P.S.; De Brum, I.A.S.; Dias, S.L.P.; Pavan, F.A. Removal of Phenolic Compounds from Aqueous Solutions Using Sludge-Based Activated Carbons Prepared by Conventional Heating and Microwave-Assisted Pyrolysis. Water Air Soil Pollut. 2016, 228, 33. [Google Scholar] [CrossRef]
- Bibi, S.; Farooqi, A.; Hussain, K.; Haider, N. Evaluation of industrial based adsorbents for simultaneous removal of arsenic and fluoride from drinking water. J. Clean. Prod. 2015, 87, 882–896. [Google Scholar] [CrossRef]
- Littler, J.; Geroni, J.N.; Sapsford, D.J.; Coulton, R.; Griffiths, A.J. Mechanisms of phosphorus removal by cement-bound ochre pellets. Chemosphere 2013, 90, 1533–1538. [Google Scholar] [CrossRef]
- Park, J.-Y.; Byun, H.-J.; Choi, W.-H.; Kang, W.-H. Cement paste column for simultaneous removal of fluoride, phosphate, and nitrate in acidic wastewater. Chemosphere 2008, 70, 1429–1437. [Google Scholar] [CrossRef]
- Barbudo, A.; Galvin, A.P.; Agrela, F.; Ayuso, J.; Jiménez, J.R. Correlation analysis between sulphate content and leaching of sulphates in recycled aggregates from construction and demolition wastes. Waste Manag. 2012, 32, 1229–1235. [Google Scholar] [CrossRef] [PubMed]
Countries | CDW Generation (106 tons) | Recovery Rate (%) |
---|---|---|
Europe Union | ||
France | 246.70 | 59.00 |
Germany | 201.00 | 85.00 |
United Kingdom | 100.23 | 91.00 |
Italy | 39.00 | 97.00 |
Spain | 27.70 | 68.00 |
The Netherlands | 25.71 | 99.00 |
Finland | 16.00 | 12.00 |
Czech Republic | 13.80 | 60.00 |
Portugal | 11.40 | 74.00 |
Austria | 8.30 | 92.00 |
Sweden | 7.70 | 79.00 |
Belgium | 6.95 | 86.00 |
Poland | 3.51 | 68.00 |
Ireland | 3.31 | 74.00 |
Hungary | 3.00 | 65.00 |
Denmark | 2.89 | 87.00 |
Estonia | 1.94 | 75.00 |
Bulgaria | 1.54 | 12.00 |
Romania | 1.33 | 67.00 |
Slovakia | 0.80 | 39.00 |
Greece | 0.81 | 0.40 |
Croatia | 0.68 | 52.00 |
Luxembourg | 0.58 | 99.00 |
Lithuania | 0.56 | 87.00 |
Slovenia | 0.53 | 91.00 |
Malta | 0.52 | 19.00 |
Latvia | 0.40 | 96.00 |
Cyprus | 0.14 | 45.00 |
Other countries | ||
China | 1020.00 | 40.00 |
India | 530.00 | n.a. |
U.S.A. | 519.00 | 48.00 |
Brazil | 101.00 | 6.14 |
Japan | 77.00 | 80.50 |
Taiwan | 63.00 | 91.00 |
Hong Kong | 24.30 | 28.00 |
Australia | 19.50 | 62.20 |
Thailand | 10.00 | 32.00 |
Switzerland | 7.00 | 28.00 |
South Africa | 4.70 | 16.00 |
Norway | 1.30 | 67.30 |
RC—Siliceous | RC—Limestone | RMA and RMCA | |
---|---|---|---|
SiO2 | 45–60% | 4–5% | 40–50% |
Al2O3 | 15–20% | 1–2% | 6–8% |
Fe2O3 | 2–5% | 1–2% | 2–4% |
CaO | 5–7% | 52–54% | 20–28% |
MgO | 0.5–1.5% | 0.2–0.8% | 0–1% |
Adsorbent | Adsorbate | Qmax (mg g−1) | Isotherm Model | Conditions | Ref. |
---|---|---|---|---|---|
Cellular concrete-supported | Arsenic | 16.0 | Langmuir | 0.2 g of adsorbent in 50 mL with initial concentration from 10 to100 mg L−1; pH from 6.5 to 7.2 | Martemianov et al. [145] |
Cellular concrete-supported | Copper | 53.0 | Langmuir | 0.07 g of adsorbent in 100 mL of at 180 rpm; pH of 5.0 and equilibrium time of 120 min | Martemianov et al. [145] |
Hydrated cement | Fluoride | 2.7 | Freundlich | Initial ion concentration of 15.8, pH of 6.7, adsorbent dosage of 10 g/L, shaking speed of 150 rpm, contact time of 24 h | Kagne et al. [147] |
Recycled concrete | Phosphate | 6.88 | Langmuir | pH of 5.0; particle size 2–5 mm; 2.0 g of adsorbent in 100 mL of solution | Deng and Wheatley [148] |
Aerated autoclaved light concrete | Arsenic(III) | 15.5 | Freundlich | Temperature of 24 °C, adsorbent dose of 1.0 g/L, contact time of 30 min, pH of 7.0 | Mondal et al. [149] |
Burnt Crushed Concrete Granules (700 C) | Phosphate | 21.55 | Langmuir | pH 7.0; Equilibrium time of 30 min; Adsorbent dosage of 5 g/L | Kang et al. [150] |
Burnt Crushed Concrete Granules (900 C) | Phosphate | 8.47 | Langmuir | pH 7.0; Equilibrium time of 30 min; Adsorbent dosage of 5 g/L | Kang et al. [150] |
Carbonated concrete | Phosphate | 30.6 | - | pH 12.4; 22 °C, Equilibrium time of 104 min; Adsorbent dosage of 5 g/L | Dos Reis et al. [146] |
Non-carbonated concrete | Phosphate | 47.6 | - | pH 12.4; 22 °C, Equilibrium time of 72 min; Adsorbent dosage of 5 g/L | Dos Reis et al. [146] |
CSW | Phosphate | 24.04 | Liu | pH 9.4; 22 °C, Equilibrium time of 212 min; Adsorbent dosage of 5 g/L | Dos Reis et al. [151] |
CSW-C | Phosphate | 57.64 | Liu | pH 9.4; 22 °C, Equilibrium time of 136 min; Adsorbent dosage of 5 g/L | Dos Reis et al. [151] |
Functionalized CDW | Ciprofloxacin | 138 | Liu | Temperature of 40 °C, adsorbent dose of 1.5 g/L, contact time of 70 min, pH = 7.0 | Caicedo et al. [152] |
Concrete sludge | Borate | 50.0 | - | Temperature of 25 °C, adsorbent dose of 1.5 g/L, contact time of 70 min, pH = 7.0 | Sasaki et al. [153] |
Portland Pozzolana Cement | Fluoride | 0.25 | - | Temperature of 40 °C, adsorbent dose of 50 g/L, contact time of 27 h, pH = 2.0 | Shyamal and Ghosh [154] |
Concrete powder | Cesium | 96.97 | Langmuir | Temperature of 21 °C, contact time of 8 min, pH = 12.0 | Kang et al. [155] |
Cement carbon composite | Methylene blue | 9.6 | Langmuir | Temperature of 30 °C, adsorbent dose of 1.0 g/L, contact time of 3 h | Manjunath et al. [156] |
Cement carbon composite | Methyl orange | 20.20 | Langmuir | Temperature of 30 °C, adsorbent dose of 1.0 g/L, contact time of 3 h | Manjunath et al. [156] |
Portland cement derived adsorbent | Copper | 145.8 | Langmuir | Temperature of 25 °C, adsorbent dose of 10.0 g/L, contact time of 3 h, pH = 5.0 | Lim et al. [157] |
Portland cement derived adsorbent | Cadmium | 177.9 | Langmuir | Temperature of 25 °C, adsorbent dose of 10.0 g/L, contact time of 3 h, pH = 5.0 | Lim et al. [157] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis, G.S.d.; Quattrone, M.; Ambrós, W.M.; Grigore Cazacliu, B.; Hoffmann Sampaio, C. Current Applications of Recycled Aggregates from Construction and Demolition: A Review. Materials 2021, 14, 1700. https://doi.org/10.3390/ma14071700
Reis GSd, Quattrone M, Ambrós WM, Grigore Cazacliu B, Hoffmann Sampaio C. Current Applications of Recycled Aggregates from Construction and Demolition: A Review. Materials. 2021; 14(7):1700. https://doi.org/10.3390/ma14071700
Chicago/Turabian StyleReis, Glaydson Simões dos, Marco Quattrone, Weslei Monteiro Ambrós, Bogdan Grigore Cazacliu, and Carlos Hoffmann Sampaio. 2021. "Current Applications of Recycled Aggregates from Construction and Demolition: A Review" Materials 14, no. 7: 1700. https://doi.org/10.3390/ma14071700
APA StyleReis, G. S. d., Quattrone, M., Ambrós, W. M., Grigore Cazacliu, B., & Hoffmann Sampaio, C. (2021). Current Applications of Recycled Aggregates from Construction and Demolition: A Review. Materials, 14(7), 1700. https://doi.org/10.3390/ma14071700