The Influence of the Physical-Mechanical Parameters of Rock on the Extent of the Initial Failure Zone under the Action of an Undercut Anchor
Abstract
:1. Introduction
2. Materials and Methods
Simulation Assumptions
- Young’s modulus EI = 14276 MPa and Poisson’s Ratio ν1 = 0.15 and ν2 = 0.20
- Young’s modulus EII = 9287MPa and Poisson’s Ratio ν3 = 0.25 and ν4 = 0.30
- Tensile strength (two options) ftI = 7.74 MPa, ftII =15MPa
3. Discussion
4. Validation of Numerical Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Valikhani, A.; Jaberi Jahromi, A.; Mantawy, I.M.; Azizinamini, A. Numerical Modelling of Concrete-to-UHPC Bond Strength. Materials 2020, 13, 1379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sucharda, O. Identification of Fracture Mechanic Properties of Concrete and Analysis of Shear Capacity of Reinforced Concrete Beams without Transverse Reinforcement. Materials 2020, 13, 2788. [Google Scholar] [CrossRef] [PubMed]
- Cajka, R.; Marcalikova, Z.; Bilek, V.; Sucharda, O. Numerical Modeling and Analysis of Concrete Slabs in Interaction with Subsoil. Sustainability 2020, 12, 9868. [Google Scholar] [CrossRef]
- Bokor, B.; Sharma, A.; Hofmann, J. Experimental Investigations on Concrete Cone Failure of Rectangular and Non-Rectangular Anchor Groups. Eng. Struct. 2019, 188, 202–217. [Google Scholar] [CrossRef]
- Hrubesova, E.; Mohyla, M.; Lahuta, H.; Bui, T.; Nguyen, P. Experimental Analysis of Stresses in Subsoil below a Rectangular Fiber Concrete Slab. Sustainability 2018, 10, 2216. [Google Scholar] [CrossRef] [Green Version]
- Gontarz, J.; Podgórski, J.; Jonak, J.; Kalita, M.; Siegmund, M. Comparison Between Numerical Analysis and Actual Results for a Pull-Out Test. Eng. Trans. 2019. [Google Scholar] [CrossRef]
- Jendzelovsky, N.; Tvrda, K. Probabilistic Analysis of a Hospital Building Slab Foundation. Appl. Sci. 2020, 10, 7887. [Google Scholar] [CrossRef]
- Eligehausen, R.; Mallée, R.; Silva, J.F. Anchorage in Concrete Construction; Ernst: Berlin, Germany, 2006; ISBN 978-3-433-01143-0. [Google Scholar]
- Hoehler, M.S.; Eligehausen, R. Behavior and Testing of Anchors in Simulated Seismic Cracks. ACI Struct. J. 2008, 105, 348. [Google Scholar]
- Mahrenholtz, P.; Eligehausen, R.; Hutchinson, T.C.; Hoehler, M.S. Behavior of Post-Installed Anchors Tested by Stepwise Increasing Cyclic Load Protocols. ACI Struct. J. 2016, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eriksson, D.; Gasch, T. Load Capacity of Anchorage to Concrete at Nuclear Facilities: Numerical Studies of Headed Studs and Expansion Anchors; Stockholm, Sweden. 2011. Available online: https://www.semanticscholar.org/paper/Load-capacity-of-anchorage-to-concrete-at-nuclear-%3A-Eriksson-Gasch/74ed1ef1fca949036362b5ae849e38e0d65fd962 (accessed on 6 April 2021).
- Segle, P. Numerical Simulations of Headed Anchors Break in Reinforced and Non-Reinforced Concrete Structures; Strålsäkerhetsmyndigheten: Katrineholm, Sweden, 2013.
- Fuchs, W.; Eligehausen, R.; Breen, J. Concrete Capacity Design (Ccd) Approach for Fastening to Concrete. ACI Struct. J. 1995, 92, 73–94. [Google Scholar]
- Munemoto, S.; Sonoda, Y. Experimental Analysis of Anchor Bolt in Concrete under the Pull-Out Loading. Procedia Eng. 2017, 171, 926–933. [Google Scholar] [CrossRef]
- Nilforoush, R. A Refined Model for Predicting Concrete-Related Failure Load of Tension Loaded Cast-in-Place Headed Anchors in Uncracked Concrete. Nord. Concr. Res. 2019, 60, 105–129. [Google Scholar] [CrossRef] [Green Version]
- Albadran, S.Q. Performance of Cast-in Anchors in Early Age Concrete. Ph.D. Thesis, Swinburne University of Technology, Melbourne, Australia, 2020. [Google Scholar]
- Siegmund, M.; Kalita, M.; Bałaga, D.; Kaczmarczyk, K.; Józef, J. Testing the Rocks Loosening Process by Undercutting Anchors. Studia Geotech. Mech. 2020, 42, 276–290. [Google Scholar] [CrossRef]
- Jonak, J.; Karpiński, R.; Siegmund, M.; Machrowska, A.; Prostański, D. Experimental Verification of Standard Recommendations for Estimating the Load-Carrying Capacity of Undercut Anchors in Rock Material. Adv. Sci. Technol. Res. J. 2021, 15, 230–244. [Google Scholar] [CrossRef]
- Jonak, J.; Siegmund, M. FEM 3D Analysis of Rock Cone Failure Range during Pull-out of Undercut Anchors. IOP Conf. Ser. Mater. Sci. Eng. 2019, 710, 012046. [Google Scholar] [CrossRef]
- Jonak, J.; Karpiński, R.; Siegmund, M.; Wójcik, A.; Jonak, K. Analysis of the Rock Failure Cone Size Relative to the Group Effect from a Triangular Anchorage System. Materials 2020, 13, 4657. [Google Scholar] [CrossRef] [PubMed]
- Jonak, J.; Siegmund, M.; Karpiński, R.; Wójcik, A. Three-Dimensional Finite Element Analysis of the Undercut Anchor Group Effect in Rock Cone Failure. Materials 2020, 13, 1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abaqus 2019; Dassault Systemes Simulia Corporation: Velizy Villacoublay, France, 2019.
- Molina, O.; Vilarrasa, V.; Zeidouni, M. Geologic Carbon Storage for Shale Gas Recovery. Energy Procedia 2017, 114, 5748–5760. [Google Scholar] [CrossRef] [Green Version]
- Holstein, E.D. (Ed.) Petroleum Engineering Handbook. Vol. V, B: Reservoir Engineering and Petrophysics; Society of Petroleum Engineers SPE: Richardson, TX, USA, 2007; ISBN 978-1-55563-120-8. [Google Scholar]
- Cook, R.A.; Klingner, R.E. Behavior and Design of Ductile Multiple-Anchor Steel-to-Concrete Connections; The National Academies of Sciences, Engineering, and Medicine: New York, NY, USA, 1989. [Google Scholar]
- Bazant, Z.P.; Kazemi, M.T.; Hasegawa, T.; Mazars, J. Size Effect in Brazilian Split-Cylinder Tests. Measurements and Fracture Analysis. ACI Mater. J. 1991, 88, 325–332. [Google Scholar]
- Siegmund, M.; Jonak, J. Analiza Wyników Badań Wstępnych Oraz Określenie Kierunku Dalszych Prac Badawczych Technologii Drążenia Tuneli Ratowniczych Metodą Mechanicznego Odspojenia. Cuprum Czas. Nauk. Tech. Gor. 2017, 1, 57–71. [Google Scholar]
- Gaffney, E.S. Measurements of Dynamic Friction between Rock and Steel; Systems Science and Software: La Jolla, CA, USA, 1976. [Google Scholar]
Rock | fc (MPa) | ft (MPa) | E (MPa) | ν (–) | KIC (N/mm3/2) | GIC (N/m) | c (MPa) | Description |
---|---|---|---|---|---|---|---|---|
“Braciszów” sandstone | 187.232 | 7.614 | 15.745 | 0.203 | 69.184 | 303.995 | 14.5 | Sandstone strong, compact |
“Brenna” sandstone | 95.562 | 3.209 | 13.727 | 0.148 | 25.655 | 47.946 | 6.0 | Sandstone layered, weak |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jonak, J.; Karpiński, R.; Wójcik, A.; Siegmund, M. The Influence of the Physical-Mechanical Parameters of Rock on the Extent of the Initial Failure Zone under the Action of an Undercut Anchor. Materials 2021, 14, 1841. https://doi.org/10.3390/ma14081841
Jonak J, Karpiński R, Wójcik A, Siegmund M. The Influence of the Physical-Mechanical Parameters of Rock on the Extent of the Initial Failure Zone under the Action of an Undercut Anchor. Materials. 2021; 14(8):1841. https://doi.org/10.3390/ma14081841
Chicago/Turabian StyleJonak, Józef, Robert Karpiński, Andrzej Wójcik, and Michał Siegmund. 2021. "The Influence of the Physical-Mechanical Parameters of Rock on the Extent of the Initial Failure Zone under the Action of an Undercut Anchor" Materials 14, no. 8: 1841. https://doi.org/10.3390/ma14081841
APA StyleJonak, J., Karpiński, R., Wójcik, A., & Siegmund, M. (2021). The Influence of the Physical-Mechanical Parameters of Rock on the Extent of the Initial Failure Zone under the Action of an Undercut Anchor. Materials, 14(8), 1841. https://doi.org/10.3390/ma14081841