Some Aspects of Shear Behavior of Soft Soil–Concrete Interfaces and Its Consequences in Pile Shaft Friction Modeling
Abstract
:1. Introduction
1.1. General Considerations
1.2. Current State of Knowledge
1.3. Aims of the Reserch
2. Soils Used in Interface Testing
2.1. Soils Description
2.2. Soil Samples Preparation
3. Interfaces and Direct Shear Devices
3.1. Smooth Interface
3.2. Rough Interface
3.3. Direct Shear Box Devices
3.4. Testing Program
3.5. Interface Shear Tests Interpretation
4. Interfaces Testing Results and Discussion
4.1. Interface Shear Strength
4.2. Interface Stifness
5. Interface Hyperbolic Model and Instrumented Pile Tests
5.1. Hyperbolic Model
5.2. Instrumented Pile Tests
5.3. Comparison between Hyperbolic Model and Instrumented Pile Tests
6. Conclusions
- Intact samples usually exhibit lower interface shear strength then reconstituted ones;
- There is significant variability on adhesion that influences the hyperbolic interface model. For instance, organic clay–concrete interface shear strength can vary from 5 to 25 kPa (Figure 10) depending on interface type. The reasons for discrepancies can be related to the microscopic random arrangement of soil particles and small peats inserts (also located randomly within the sample);
- Backward shearing following forward reduces interface shear strength up to 35% depending on interface and organic soil type;
- Shear stiffness increases with normal stress and drops with displacement level. It is also characterized by significant scatter;
- Shearing in backward following forward direction produces usually 2 or 3 times higher initial stiffness than shearing directly in forward direction;
- Organic silts and peats can be characterized by the lowest variability of results while organic clays by the highest;
- Shear and stiffness parameters obtained in this research fit the literature data;
- Interface shear testing with hyperbolic model can be used to determine load transfer curves that fits the field measurements of instrumented piles during static loading test;
- The variability and error propagation can be useful in determination of interface shear strength variability and the upper and lower bound of mobilized skin friction.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Petroleum Institute. API RP 2A; API Publishing Services: Washington, DC, USA, 2020. [Google Scholar]
- Naval Facilities Engineering Command. Foundations & Earth Structures—Design Manual 7.02; Naval Publications and Forms Center: Washington, DC, USA, 1986. [Google Scholar]
- Coyle, H.M.; Sulaiman, I. Skin friction for steel piles in sand. J. Soil Mech. Found. Div. 1967, 93, 261–270. [Google Scholar] [CrossRef]
- Evgin, E.; Fakharian, K. Effect of stress paths on the behaviour of sand steel interfaces. Can. Geotech. J. 1997, 33, 853–865. [Google Scholar] [CrossRef]
- Uesugi, M.; Kishida, H. Influential factors of between steel and dry sands. Soils Found. 1986, 26, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Uesugi, M.; Kishida, H.; Tsubakihara, Y. Behavior of sand particles in sand-steel friction. Soils Found. 1988, 28, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Alonso, E.E.; Josa, A.; Ledesma, A. Negative skin friction on piles: A simplified analysis and prediction procedure. Geotechnique 1984, 34, 341–357. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.; Chen, Y.; Wolfe, W.E. New load transfer hyperbolic model for pile-soil interface and negative skin friction on single piles embedded in soft soils. Int. J. Geomech. 2014, 14, 92–100. [Google Scholar] [CrossRef]
- Kim, S.; Jeong, S. Shear load transfer characteristics of drilled shafts in weathered rocks. J. Geotech. Geoenviron. Eng. 1999, 125, 999–1010. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, J. State of the art: Mechanical behavior of soil–structure interface. Prog. Nat. Sci. 2009, 19, 1187–1196. [Google Scholar] [CrossRef]
- Tsubakihara, Y.; Kishida, H. Frictional behaviour between normally consolidated clay and steel by two direct shear type apparatuses. Soils Found. 1993, 33, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Tsubakihara, Y.; Kishida, H.; Nishiyama, T. Friction between cohesive soils and steel. Soils Found. 1993, 33, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Liu, S.; Cheng, Y.P. Role of normal boundary condition in interface shear test for the determination of skin friction along pile shaft. Can. Geotech. J. 2017, 54, 1245–1256. [Google Scholar] [CrossRef] [Green Version]
- Lemos, L.J.L.; Vaughan, P.R. Clay-interface shear resistance. Geotechnique 2000, 50, 55–64. [Google Scholar] [CrossRef]
- Bałachowski, L. Scale Effect in shaft friction from the direct shear interface tests. Arch. Civ. Mech. Eng. 2006, 6, 13–28. [Google Scholar] [CrossRef]
- Potyondy, J.G. Skin friction between variuos soils and construction materials. Géotechnique 1961, 11, 339–353. [Google Scholar] [CrossRef]
- Brandt, J.R.T. Behaviour of Soil-Concrete Interfaces. Ph.D. Thesis, University of Alberta, Edmonton, AB, Canada, 1985. [Google Scholar]
- Goh, A.T.C.; Donald, I.B. Investigation of soil-concrete interfaces behaviour by simple shear apparatus. In Proceedings of the Proceedings of Fourth Australia—New Zeland Conference on Geomechanics, Perth, Australia, 14 May 1985; pp. 101–106. [Google Scholar]
- Tiwari, B. Shear strength reduction at soil structure interface. In Proceedings of the GeoFlorida 2010: Advances in Analysis, Modeling & Design, West Palm Beach, FL, USA, 20–24 February 2010; pp. 1747–1756. [Google Scholar]
- Chen, X.; Zhang, J.; Xiao, Y.; Li, J. Effect of roughness on shear behavior of red clay–concrete interface in large-scale direct shear tests. Can. Geotech. J. 2015, 52, 1122–1135. [Google Scholar] [CrossRef]
- Canakci, H.; Hamed, M.; Celik, F.; Sidik, W.; Eviz, F. Friction characteristics of organic soil with construction materials. Soils Found. 2016, 56, 965–972. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, H.; Yan, P.; Zhang, J.; Ding, Y. The influence of roughness on cyclic and post-cyclic shear behavior of red clay-concrete interface subjected to up to 1000 cycles. Constr. Build Mater. 2021, 121718. [Google Scholar] [CrossRef]
- Zhang, M.; Sang, S.; Wang, Y.; Bai, X. Factors influencing the mechanical characteristics of a pile–soil interface in clay soil. Front. Earth Sci. 2020, 7, 364. [Google Scholar] [CrossRef]
- Wang, Y.-B.; Zhao, C.; Wu, Y. Study on the effects of grouting and roughness on the shear behavior of cohesive soil–concrete interfaces. Materials 2020, 13, 3043. [Google Scholar] [CrossRef] [PubMed]
- Ampera, B.; Aydogmus, T. Skin friction between peat and silt soils with construction materials. Electron. J. Geotech. Eng. 2005, 10, 0557. [Google Scholar]
- Taha, A.; Fall, M.; Student, M.A. Shear behavior of sensitive marine clay-concrete interfaces. J. Geotech. Geoenviron. Eng. 2013, 139, 644–650. [Google Scholar] [CrossRef]
- Di Donna, A.; Ferrari, A.; Laloui, L. Experimental investigations of the soil–concrete interface: Physical mechanisms, cyclic mobilization, and behaviour at different temperatures. Can. Geotech. J. 2016, 53, 659–672. [Google Scholar] [CrossRef]
- Konkol, J.; Międlarz, K.; Bałachowski, L. Geotechnical characterization of soft soil deposits in northern poland. Eng. Geol. 2019, 259, 105187. [Google Scholar] [CrossRef]
- Test Method for Direct Shear Test of Soils under Consolidated Drained Conditions; ASTM D3080; ASTM International: West Conshohocken, PA, USA, 2020.
- Porcino, D.; Fioravante, V.; Ghionna, V.N.; Pedroni, S. Interface behavior of sands from constant normal stiffness direct shear tests. Geotech. Test. J. 2003, 26, 289–301. [Google Scholar] [CrossRef]
- Wu, P.K.; Matsushima, K.; Tatsuoka, F. Effects of specimen size and some other factors on the strength and deformation of granular soil in direct shear tests. Geotech. Test. J. 2008, 31, 45–64. [Google Scholar] [CrossRef]
- Shibuya, S.; Mitachi, T.; Tamate, S. Interpretation of direct shear box testing of sands as quasi-simple shear. Geotechnique 1997, 47, 769–790. [Google Scholar] [CrossRef]
- Matsuoka, T.; Liu, S. Simplified direct box shear test on granular materials and its application to rockfill materials. Soils Found. 1998, 38, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Fellenius, B.H. The analysis of results from routine pile load tests. Ground Eng. 1980, 13, 19–31. [Google Scholar]
- Vermeer, P.A.; Meier, C.-P. Standsicherheit Und Verformungen Bei Tiefen Baugruben in Bindigem Boden. In Proceedings of the Tagungsband Vorträge der Baugrundtagung, Stuttgart, Germany, 21 September 1998; pp. 133–148. [Google Scholar]
- Lashkari, A. Prediction of the shaft resistance of nondisplacement piles in sand. Int. J. Numer. Anal. Methods Geomech. 2013, 37, 904–931. [Google Scholar] [CrossRef]
- Duncan, J.M.; Chang, C.Y. Nonlinear analysis of stress and strain in soils. J. Soil Mech. Found. Div. 1970, 96, 1629–1653. [Google Scholar] [CrossRef]
- Fellenius, B.H. From strain measurements to load in an instrumented pile. Geotech. News Vanc. 2001, 19, 35–38. [Google Scholar]
- Krasiński, A. Advanced field investigations of screw piles and columns. Arch. Civ. Eng. 2011, 57, 45–57. [Google Scholar] [CrossRef]
- Krasiński, A.; Wiszniewski, M. Static load test on concrete pile–instrumentation and results interpretation. In Proceedings of the International Conference on PILE 2017: Advancement of Pile Technology and Pile Case Histories, Bali, Indonesia, 25 September 2017. B3-1 p. [Google Scholar]
- Bohn, C. Development of axial pile load transfer curves based on instrumented load tests. J. Geotech. Geoenviron. Eng. 2017, 143, 04016081. [Google Scholar] [CrossRef]
- Brown, M.J.; Hyde, A.F.L.; Anderson, W.F. Analysis of a rapid load test on an instrumented bored pile in clay. Géotechnique 2006, 56, 627–638. [Google Scholar] [CrossRef] [Green Version]
- Mikina, K.; Bałachowski, L.; Konkol, J. Shaft friction from the DMT and direct shear interface tests. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 727, p. 012002. [Google Scholar] [CrossRef]
Soil Type | δ | ca | ϕ’ | c’ | δ/ϕ’ | τf/τb | Ki | σn | u | Reference |
---|---|---|---|---|---|---|---|---|---|---|
(°) | (kPa) | (°) | (kPa) | (-) | (-) | (kPa/mm) | (kPa) | (mm) | ||
Red clay | 24 (1) | - | - | - | - | 1.13 | 102 (2) | 100 | - | [22] |
Red clay | 10 | 41 | 16 | 95 | 0.63 | - | - | - | - | [20] |
Sandy clay | 18.3 | 14 | 28 | 16.2 | 0.65 | - | 200 | 100 | 0.1 | [18] |
Silt | 22.3–26.5 | - | 29–30.5 | 0 | 0.74–0.90 | - | - | - | - | [25] |
Silt | 25.2–27.7 | - | 27–30 | 0 | 0.92–0.93 | - | - | - | - | [19] |
Silt | - | - | - | - | 1.0 | - | - | - | - | [16] |
Soil Type | δ | ca | ϕ’ | c’ | δ/ϕ’ | τf/τb | Ki | σn | u | Reference |
---|---|---|---|---|---|---|---|---|---|---|
(°) | (kPa) | (°) | (kPa) | (-) | (-) | (kPa/mm) | (kPa) | (mm) | ||
Peat (1) | 33.8 | - | 43 | - | 0.79 | - | 100 | 140 | 0.2 | [21] |
Marine Leda clay | 33–35 | - | 30.5 | 0 | 1.11 | - | 312 | 250 | 0.04 | [26] |
Red clay | 26.5–28.5 (2) | - | - | - | - | 1.36–1.54 | 105 (3) | 100 | - | [22] |
Red clay | 10–13 | 41–104 | 16 | 95 | 0.63–0.81 | - | - | - | - | [20] |
Illite clay | 25 | 7 | 26 | 9 | 0.96 | - | 200 | 50 | 0.1 | [27] |
Clay | 26.5–40 (4) | 7 | 34 | 50 | 0.78–1.17 | - | 75 | 30–60 | 0.2 | [17] |
Silty clay | 31.4–34.5 | 4.6–10.4 | 33.1 | 18.5 | 0.95–1.04 | - | 20 | 50 | 1 | [24] |
Sandy clay | 21 | 15 | 28 | 16.2 | 0.75 | - | 670 | 100 | 0.06 | [18] |
Silt | 30 | - | 29–30.5 | 0 | 0.98–1.02 | - | - | - | - | [25] |
No | Soil | Type | Soil Properties | Intact | Reconstituted | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
LOI | w | ρ | k | Eoed | ϕ’max | c’ | |||||
(%) | (%) | (g/cm3) | (m/s) | (MPa) | (°) | (kPa) | |||||
1 | Silty loam | NC | 5.1 | 30.6 | 1.74 | 2.50e–7 (1) | 1.6–2.3 | 30.9 (3) | 0 | ˅ | ˅ |
2 | Organic clay | NC | 11.9 | 68.0 | 1.47 | 2.46e–7 | 0.9–2.3 | 23.1 (2)–26.4 (3) | 0 | ˅ | ˅ |
3 | Organic silt | NC | 7.0 | 49.3 | 1.63 | 4.84e–8 | 4.2–5.2 | 31.3 (2)–36.6 (3) | 0 | x | ˅ |
4 | Peat | NC | 78.5 | 270.1 | 1.18 | 2.73e–6 | 1.2–1.8 | 55.6 (2) | 0 | ˅ | ˅ |
Soil | Number of Tests (1) | ||
---|---|---|---|
Repeatability | Fatigue in Backward Shearing | Stiffness Degradation | |
Silty loam | 4 (4) | 3 (5) | 4 (4) |
Organic clay | 3 (3) | 4 (4) | 3 (3) |
Organic silt | 3 (3) | 5 (3) | 3 (3) |
Peat | 4 (3) | 5 (4) | 3 (3) |
Soil | Interface Shear Strength Parameters | ||||
---|---|---|---|---|---|
δf | tan(δf) ± Stan(δf) | ca ± Sca | τf/τb | δf/ϕ’max | |
(°) | (-) | (kPa) | (-) | (-) | |
Silty loam | 24.1 | 0.448 ± 0.024 | 5.1 ± 3.7 | 1.09 ÷ 1.30 | 0.78 |
Organic clay | 14.4 | 0.256 ± 0.026 | 12.6 ± 5.1 | 0.91 ÷ 1.43 | 0.62 |
Organic silt | 31.3 | 0.607 ± 0.010 | 3.0 ± 2.9 | 0.89 ÷ 1.09 | 1.00 |
Peat | 26.4 | 0.490 ± 0.016 | 6.7 ± 2.4 | 1.00 ÷ 1.25 | 0.47 |
Soil | Interface Shear Strength Parameters | ||||
---|---|---|---|---|---|
δf | tan(δf) ± Stan(δf) | ca ± Sca | τf/τb | δf/ϕ’max | |
(°) | (-) | (kPa) | (-) | (-) | |
Silty loam | 30.6 | 0.591 ± 0.029 | 5.1 ± 2.3 | 0.92 ÷ 1.15 | 0.99 |
Organic clay | 21.8 | 0.400 ± 0.053 | 7.7 ± 4.4 | 1.13 ÷ 1.31 | 0.94 |
Organic silt | 33.8 | 0.672 ± 0.028 | 11.7 ± 2.4 | 0.92 ÷ 0.98 | 1.08 |
Peat | 29.2 | 0.559 ± 0.016 | 11.9 ± 2.6 | 0.95 ÷ 1.28 | 0.52 |
Soil | Interface Stiffness | |
---|---|---|
Ki0 ≈ Kif0 (u ≈ 0.05mm, σ ≈ 50kPa) | Kib0/Kif0 | |
(kPa/mm) | (-) | |
Silty loam | 50 ± 10 | 2.8 ÷ 3.0 |
Organic clay | 60 ± 20 | 2.7 ÷ 4.0 |
Organic silt | 100 ± 20 | 1.2 ÷ 2.3 |
Peat | 50 ± 20 | 1.3 ÷ 1.8 |
Soil | Interface Stiffness | |
---|---|---|
Ki0≈Kif0 (u ≈ 0.05mm, σ ≈ 50kPa) | Kib0/Kif0 | |
(kPa/mm) | (-) | |
Silty loam | 50 ± 10 | 2.2 ÷ 2.6 |
Organic clay | 60 ± 20 | 2.9 ÷ 4.2 |
Organic silt | 100 ± 20 | 2.4 ÷ 4.0 |
Peat | 50 ± 20 | 1.4 ÷ 2.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konkol, J.; Mikina, K. Some Aspects of Shear Behavior of Soft Soil–Concrete Interfaces and Its Consequences in Pile Shaft Friction Modeling. Materials 2021, 14, 2578. https://doi.org/10.3390/ma14102578
Konkol J, Mikina K. Some Aspects of Shear Behavior of Soft Soil–Concrete Interfaces and Its Consequences in Pile Shaft Friction Modeling. Materials. 2021; 14(10):2578. https://doi.org/10.3390/ma14102578
Chicago/Turabian StyleKonkol, Jakub, and Kamila Mikina. 2021. "Some Aspects of Shear Behavior of Soft Soil–Concrete Interfaces and Its Consequences in Pile Shaft Friction Modeling" Materials 14, no. 10: 2578. https://doi.org/10.3390/ma14102578
APA StyleKonkol, J., & Mikina, K. (2021). Some Aspects of Shear Behavior of Soft Soil–Concrete Interfaces and Its Consequences in Pile Shaft Friction Modeling. Materials, 14(10), 2578. https://doi.org/10.3390/ma14102578