Size-Dependent Filtration Efficiency of Alternative Facemask Filter Materials
Abstract
:1. Introduction
2. Materials and Methods
- The NIOSH protocol uses a TSI Automated Filter Tester (Model 8130) that enables the use of the entire respirator for the testing.
- The flow rate (4.37 L/min) was chosen such that the face velocity to the 47 mm discs equals the face velocity to the (overall) material surface area of typical isolation mask (6.75″ × 7.75″) at an inhalation flow rate of 85 L/min (suggested by NIOSH). For a surface area of 337.5 cm2, the face velocity is 4.2 cm s−1. All measurements were made at 4.2 cm/s, unless mentioned otherwise.
- The filter media was not preconditioned at a specific Relative Humidity (RH).
2.1. Filter-Holder-Based System
2.2. Mannequin-in-Chamber-Based System
2.3. Experimental Plan
2.4. 3.D-Printed Masks
2.4.1. Designing Masks and Face Models
2.4.2. 3D-Printing Method
2.5. Material Characterization
3. Results and Discussion
3.1. Filtration Efficiency and Pressure Drop of Filter Media in Single or Double Layers
3.2. Size-Dependent Removal Efficiency Estimated in a Mannequin-in-Chamber-Based System
3.2.1. Relative Importance of Mask Seal as Compared to Filter Media Efficiency
3.3. Dependence of Filtration Efficiency on Filter Media Characteristics
3.3.1. SEM Analysis of Clean Filter Media
3.3.2. Relative Importance of Diffusion, Interception, and Impaction on Filtration Efficiency
3.4. Effect of Face Velocity and Multiple-Filter Layers on Filtration Efficiency and Pressure Drop
3.5. Clean Filter Specific Resistance for Single- and Multiple-Layers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Cunningham correction, - | |
Diffusion Coefficient, m2 s | |
Kuwabara factor, - | |
Knudsen Number, - | |
Peclet Number, - | |
Interception parameter, - | |
Reynolds number, - | |
Stokes number, - | |
Temperature, K | |
Face velocity, m s−1 | |
Fiber diameter, m | |
Particle diameter, m | |
Boltzmann constant, m2 kg s−2 K−1 | |
Solidity, - | |
Filtration efficiency, - | |
Filtration efficiency due to diffusion | |
Filtration efficiency due to interception | |
Filtration efficiency due to impaction | |
Particle density, kg m−3 | |
Air density, kg m−3 | |
Viscosity, kg m−1 s−1 | |
Mean free path, m |
References
- World Health Organization. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 11 March 2020).
- Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020, 20, 533–534. [Google Scholar] [CrossRef]
- Galea, S.; Abdalla, S.M. COVID-19 Pandemic, Unemployment, and Civil Unrest: Underlying Deep Racial and Socioeco-nomic Divides. JAMA 2020, 324, 227–228. [Google Scholar] [CrossRef]
- Guan, D.; Wang, D.; Hallegatte, S.; Davis, S.J.; Huo, J.; Li, S.; Bai, Y.; Lei, T.; Xue, Q.; Coffman, D.; et al. Global supply-chain effects of COVID-19 control measures. Nat. Hum. Behav. 2020, 4, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, M.; Agha, R. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int. J. Surg. 2020, 78, 185–193. [Google Scholar] [CrossRef]
- Sahu, P. Closure of Universities Due to Coronavirus Disease 2019 (COVID-19): Impact on Education and Mental Health of Students and Academic Staff. Cureus 2020, 12, e7541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Lancker, W.; Parolin, Z. COVID-19, school closures, and child poverty: A social crisis in the making. Lancet Public Health 2020, 5, e243–e244. [Google Scholar] [CrossRef]
- McGinty, E.E.; Presskreischer, R.; Han, H.; Barry, C.L. Psychological Distress and Loneliness Reported by US Adults in 2018 and April 2020. JAMA 2020, 324, 93. [Google Scholar] [CrossRef] [PubMed]
- WHO. Transmission of SARS-CoV-2: Implications for Infection Prevention Precautions: Scientific Brief; 9 July 2020; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Morawska, L.; Tang, J.W.; Bahnfleth, W.; Bluyssen, P.M.; Boerstra, A.; Buonanno, G.; Cao, J.; Dancer, S.; Floto, A.; Franchimon, F.; et al. How can airborne transmission of COVID-19 indoors be minimised? Environ. Int. 2020, 142, 105832. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.L.; Turnham, P.; Griffin, J.R.; Clarke, C.C. Consideration of the Aerosol Transmission for COVID-19 and Public Health. Risk Anal. 2020, 40, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Thomas, B.R. Does expert opinion trump evidence? Clin. Infect. Dis. 2020, ciaa1115. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.; Marr, L. Re-thinking the Potential for Airborne Transmission of SARS-CoV-2. Preprint 2020. [Google Scholar] [CrossRef]
- Tellier, R.; Li, Y.; Cowling, B.J.; Tang, J.W. Recognition of aerosol transmission of infectious agents: A commentary. BMC Infect. Dis. 2019, 19, 101. [Google Scholar] [CrossRef]
- Block, P.; Hoffman, M.; Raabe, I.J.; Dowd, J.B.; Rahal, C.; Kashyap, R.; Mills, M.C. Social network-based distancing strate-gies to flatten the COVID-19 curve in a post-lockdown world. Nat. Hum. Behav. 2020, 4, 588–596. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Liu, C.-H.; Chiu, Y.-C. Google searches for the keywords of “wash hands” predict the speed of national spread of COVID-19 outbreak among 21 countries. Brain Behav. Immun. 2020, 87, 30–32. [Google Scholar] [CrossRef]
- Cheng, K.K.; Lam, T.H.; Leung, C.C. Wearing face masks in the community during the COVID-19 pandemic: Altruism and solidarity. Lancet 2020. [Google Scholar] [CrossRef]
- Feng, S.; Shen, C.; Xia, N.; Song, W.; Fan, M.; Cowling, B.J. Rational use of face masks in the COVID-19 pandemic. Lancet Respir. Med. 2020, 8, 434–436. [Google Scholar] [CrossRef]
- Victor, C.T.; Shing, Y.T.; Wai, K.P.; Helen, K.L.; Shara, W.L. A reality check on the use of face masks during the COVID-19 outbreak in Hong Kong. EClinicalMedicine 2020, 22, 100356. [Google Scholar] [CrossRef] [PubMed]
- Zeng, N.; Li, Z.; Ng, S.; Chen, D.; Zhou, H. Epidemiology reveals mask wearing by the public is crucial for COVID-19 con-trol. Med. Microecol. 2020, 4, 100015. [Google Scholar] [CrossRef]
- Esposito, S.; Principi, N.; Leung, C.C.; Migliori, G.B. Universal use of face masks for success against COVID-19: Evidence and implications for prevention policies. Eur. Respir. J. 2020, 55, 2001260. [Google Scholar] [CrossRef]
- Eikenberry, S.E.; Mancuso, M.; Iboi, E.; Phan, T.; Eikenberry, K.; Kuang, Y.; Kostelich, E.; Gumel, A.B. To mask or not to mask: Modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic. Infect. Dis. Model. 2020, 5, 293–308. [Google Scholar] [CrossRef]
- Dbouk, T.; Drikakis, D. On respiratory droplets and face masks. Phys. Fluids 2020, 32, 063303. [Google Scholar] [CrossRef]
- CDC N95 Respirators and Surgical Masks. Available online: https://blogs.cdc.gov/niosh-science-blog/2009/10/14/n95/ (accessed on 1 March 2021).
- Qian, Y.; Willeke, K.; Grinshpun, S.A.; Donnelly, J.; Coffey, C.C. Performance of N95 respirators: Filtration efficiency for airborne microbial and inert particles. Am. Ind. Hyg. Assoc. J. 1998, 59, 128–132. [Google Scholar] [CrossRef]
- Wu, H.-L.; Huang, J.; Zhang, C.J.; He, Z.; Ming, W.-K. Facemask shortage and the novel coronavirus disease (COVID-19) outbreak: Reflections on public health measures. EClinicalMedicine 2020, 21, 100329. [Google Scholar] [CrossRef]
- Yang, S.; Lee, G.W.M.; Chen, C.M.; Wu, C.C.; Yu, K.P. The size and concentration of droplets generated by coughing in human subjects. J. Aerosol Med. 2007, 20, 484–494. [Google Scholar] [CrossRef]
- Biswas, P.; Dhawan, S. Evaporation of Emitted Droplets Are an Important Factor Affecting the Lifetime of the Airborne Coronavirus. Preprint 2020. [Google Scholar] [CrossRef]
- Lee, K.W.; Liu, B.Y.H. Theoretical Study of Aerosol Filtration by Fibrous Filters. Aerosol Sci. Technol. 1982, 1, 147–161. [Google Scholar] [CrossRef]
- Hinds, W.C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Belkin, N.L. A century after their introduction, are surgical masks necessary? AORN J. 1996, 64, 602–607. [Google Scholar] [CrossRef]
- Booth, C.M.; Clayton, M.; Crook, B.; Gawn, J. Effectiveness of surgical masks against influenza bioaerosols. J. Hosp. Infect. 2013, 84, 22–26. [Google Scholar] [CrossRef]
- Chen, S.-K.; Vesley, D.; Brosseau, L.M.; Vincent, J.H. Evaluation of single-use masks and respirators for protection of health care workers against mycobacterial aerosols. Am. J. Infect. Control. 1994, 22, 65–74. [Google Scholar] [CrossRef]
- Zhao, M.; Liao, L.; Xiao, W.; Yu, X.; Wang, H.; Wang, Q.; Lin, Y.L.; Kilinc-Balci, F.S.; Price, A.; Chu, L.; et al. Household Materials Selection for Homemade Cloth Face Coverings and Their Filtration Efficiency Enhancement with Triboelectric Charging. Nano Lett. 2020, 20, 5544–5552. [Google Scholar] [CrossRef]
- Brown, R.C. Air Filtration: An Integrated Approach to the Theory and Applications of Fibrous Filters; Pergamon: Oxford, UK, 1993. [Google Scholar]
- Rengasamy, S.; Eimer, B.; Shaffer, R.E. Simple Respiratory Protection—Evaluation of the Filtration Performance of Cloth Masks and Common Fabric Materials Against 20–1000 nm Size Particles. Ann. Occup. Hyg. 2010, 54, 789–798. [Google Scholar] [CrossRef] [Green Version]
- Oberg, T.; Brosseau, L.M. Surgical mask filter and fit performance. Am. J. Infect. Control. 2008, 36, 276–282. [Google Scholar] [CrossRef]
- Woolverton, C.J.; Ferdig, R.E.; Snyder, A.; Reed, J.; Dodson, T.; Thomas, S. Repurposing Surgical Wrap Textiles for Use as Protective Masks During Pandemic Response. Appl. Biosaf. 2020, 25, 127–129. [Google Scholar] [CrossRef]
- Lai, A.C.K.; Poon, C.K.M.; Cheung, A.C.T. Effectiveness of facemasks to reduce exposure hazards for airborne infections among general populations. J. R. Soc. Interface 2011, 9, 938–948. [Google Scholar] [CrossRef]
- Konda, A.; Prakash, A.; Moss, G.A.; Schmoldt, M.; Grant, G.D.; Guha, S. Aerosol Filtration Efficiency of Common Fabrics Used in Respiratory Cloth Masks. ACS Nano 2020, 14, 6339–6347. [Google Scholar] [CrossRef] [PubMed]
- Pei, C.; Ou, Q.; Kim, S.C.; Chen, S.-C.; Pui, D.Y. Alternative Face Masks Made of Common Materials for General Public: Fractional Filtration Efficiency and Breathability Perspective. Aerosol Air Qual. Res. 2020, 20, 2581–2591. [Google Scholar] [CrossRef]
- Zangmeister, C.D.; Radney, J.G.; Vicenzi, E.P.; Weaver, J.L. Filtration efficiencies of nanoscale aerosol by cloth mask materials used to slow the spread of SARS-CoV-2. ACS Nano 2020, 14, 9188–9200. [Google Scholar] [CrossRef]
- Hao, W.; Parasch, A.; Williams, S.; Li, J.; Ma, H.; Burken, J.; Wang, Y. Filtration performances of non-medical materials as candidates for manufacturing facemasks and respirators. Int. J. Hyg. Environ. Health 2020, 229, 113582. [Google Scholar] [CrossRef] [PubMed]
- Ballard, D.H.; Jammalamadaka, U.; Meacham, K.W.; Hoegger, M.J.; Burke, B.A.; Morris, J.A.; Scott, A.R.; O’Connor, Z.; Gan, C.; Hu, J.; et al. Quantitative fit tested N95 respirator-alternatives generated with CT imaging and 3D printing: A response to potential shortages during the COVID-19 pandemic. Acad. Radiol. 2021, 28, 158–165. [Google Scholar] [CrossRef]
- Li, J.; Mattewal, S.K.; Patel, S.; Biswas, P. Evaluation of Nine Low-cost-sensor-based Particulate Matter Monitors. Aerosol Air Qual. Res. 2020, 20, 254–270. [Google Scholar] [CrossRef] [Green Version]
- Kikinis, R.; Pieper, S.D.; Vosburgh, K.G. 3D Slicer: A Platform for Subject-Specific Image Analysis, Visualization, and Clinical Support. In Intraoperative Imaging and Image-Guided Therapy; Springer Science and Business Media LLC.: Berlin/Heidelberg, Germany, 2014; pp. 277–289. [Google Scholar]
- Suneja, S.K.; Lee, C.H. Aerosol filtration by fibrous filters at intermediate Reynolds numbers. Atmos. Environ. (1967) 1974, 8, 1081–1094. [Google Scholar] [CrossRef]
- Ou, Q.; Pei, C.; Kim, S.C.; Abell, E.; Pui, D.Y. Evaluation of decontamination methods for commercial and alternative res-pirator and mask materials—View from filtration aspect. J. Aerosol Sci. 2020, 150, 105609. [Google Scholar] [CrossRef]
Method | Section | Filter Media/Condition | Condition |
---|---|---|---|
Filter-Holder-based System | Size-dependent (10–2000 nm) filtration efficiency | H500, Swiffer and Merv16 | Face velocity: 4.2 cm s−1 Punch: 47 mm Aerosol: 0.3 M NaCl (10–500 nm) NTOT: 2 × 106 #/cm3 Scan: 1 min (SMPS) RH: 32–35% Aerosol: Arizona Road Dust (500–2000 nm) NTOT: 2 × 102 #/cm3 Scan time: 6 s (GRIMM) |
Size-dependent (10–500 nm) filtration efficiency | Household media: MERV-16, MERV-14, Swiffer, and pillowcase | Face velocity: 4.2 cm s−1 Punch: 47 mm Aerosol: 0.3 M NaCl NTOT: 2 × 106 #/cm3 RH: 32–35% Scan time: 1 min (SMPS) | |
Sterilization wraps: H-600, H-500 and Non-woven | |||
Isolation masks: ASTM-rated-1, ASTM-rated-2 and non-ASTM-rated | |||
Effect of flow rate | H500 And Non-woven | Face velocity: 1.7, 4.2 cm s−1 Punch: 47 mm Aerosol: 0.3 M NaCl NTOT: 2 × 106 #/cm3 RH: 32–35% Scan time: 1 min (SMPS) | |
Mannequin-based System | Size-dependent (10–500 nm) filtration efficiency | Masks: 3D-printed MIR versions 1 and 2 Filter media: H500, Swiffer, and Merv16 | Face velocity: 4.2 cm s−1 Aerosol: 0.3 M NaCl NTOT: 2 × 106 #/cm3 RH: 43–47% Scan time: 1 min (SMPS) |
Filter Media | Fiber Thickness (Df), μm | Solidity (Area Based) (α) |
---|---|---|
H500 | 10.871 | 0.14 |
H600 | 14.926 | 0.21 |
Swiffer | 10.832 | 0.32 |
MERV16 | 19.647 | 0.44 |
Filter Media | Pressure Drop (kgm−1s−2) | Face Velocity (m/s) | Clean Filter Specific Resistance (kgm−2s−1) |
---|---|---|---|
Swiffer | 2.4884 | 0.042 | 59.25 |
Swiffer (2×) | 4.9768 | 0.042 | 118.50 |
MERV14 | 4.9768 | 0.042 | 118.50 |
MERV14 (2×) | 9.9536 | 0.042 | 236.99 |
MERV16 | 4.9768 | 0.042 | 118.50 |
H500 | 17.4188 | 0.042 | 414.73 |
H500 (3×) | 79.6288 | 0.042 | 1895.92 |
H500 (2×) + MERV16 | 64.6984 | 0.042 | 1540.44 |
H500 (2×) + Swiffer | 62.21 | 0.042 | 1481.19 |
3MTM 8210 (N95) [48] | 73.0 | 0.105 | 695.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhanraj, D.I.A.; Choudhary, S.; Jammalamadaka, U.; Ballard, D.H.; Kumfer, B.M.; Dang, A.J.; Williams, B.J.; Meacham, K.W.; Axelbaum, R.L.; Biswas, P. Size-Dependent Filtration Efficiency of Alternative Facemask Filter Materials. Materials 2021, 14, 1868. https://doi.org/10.3390/ma14081868
Dhanraj DIA, Choudhary S, Jammalamadaka U, Ballard DH, Kumfer BM, Dang AJ, Williams BJ, Meacham KW, Axelbaum RL, Biswas P. Size-Dependent Filtration Efficiency of Alternative Facemask Filter Materials. Materials. 2021; 14(8):1868. https://doi.org/10.3390/ma14081868
Chicago/Turabian StyleDhanraj, David I. A., Shruti Choudhary, Udayabhanu Jammalamadaka, David H. Ballard, Benjamin M. Kumfer, Audrey J. Dang, Brent J. Williams, Kathleen W. Meacham, Richard L. Axelbaum, and Pratim Biswas. 2021. "Size-Dependent Filtration Efficiency of Alternative Facemask Filter Materials" Materials 14, no. 8: 1868. https://doi.org/10.3390/ma14081868
APA StyleDhanraj, D. I. A., Choudhary, S., Jammalamadaka, U., Ballard, D. H., Kumfer, B. M., Dang, A. J., Williams, B. J., Meacham, K. W., Axelbaum, R. L., & Biswas, P. (2021). Size-Dependent Filtration Efficiency of Alternative Facemask Filter Materials. Materials, 14(8), 1868. https://doi.org/10.3390/ma14081868