Figure 1.
Dimensions of a single-strand tundish with flow control devices (dam, weir and turbulence inhibitor); (a) side view and (b) front view (unit: mm).
Figure 1.
Dimensions of a single-strand tundish with flow control devices (dam, weir and turbulence inhibitor); (a) side view and (b) front view (unit: mm).
Figure 2.
Schematic diagram of the experimental setup for physical modelling.
Figure 2.
Schematic diagram of the experimental setup for physical modelling.
Figure 3.
Temperature measurement at selected points in non-isothermal water model (Q = 2000 l/h, H = 0.4 m, ΔT = 30 °C).
Figure 3.
Temperature measurement at selected points in non-isothermal water model (Q = 2000 l/h, H = 0.4 m, ΔT = 30 °C).
Figure 4.
Thermal flow routes.
Figure 4.
Thermal flow routes.
Figure 5.
Comparison of calculated E-curves with different CFD mesh size (mesh size: Mesh1—0.002 m; Mesh2—0.003 m and Mesh3—0.004 m).
Figure 5.
Comparison of calculated E-curves with different CFD mesh size (mesh size: Mesh1—0.002 m; Mesh2—0.003 m and Mesh3—0.004 m).
Figure 6.
Comparison of temperature measurement at No.9 point in the non-isothermal water model (Q = 1500 L/h, H = 0.4 m, ΔT = 20 °C).
Figure 6.
Comparison of temperature measurement at No.9 point in the non-isothermal water model (Q = 1500 L/h, H = 0.4 m, ΔT = 20 °C).
Figure 7.
Temperature profiles at the symmetry plane under transient non-isothermal conditions in bare water model (Q = 2000 L/h, H = 0.4 m, left: ΔT = 20 °C, right: ΔT = −20 °C). (a) 20 s, (b) 65 s, (c) 100 s.
Figure 7.
Temperature profiles at the symmetry plane under transient non-isothermal conditions in bare water model (Q = 2000 L/h, H = 0.4 m, left: ΔT = 20 °C, right: ΔT = −20 °C). (a) 20 s, (b) 65 s, (c) 100 s.
Figure 8.
Velocity at symmetry plane under transient non-isothermal conditions in bare water model (Q = 2000 L/h, H = 0.4 m, left: ΔT = 20 °C, right: ΔT = −20 °C). (a) 20 s, (b) 65 s, (c) 100 s.
Figure 8.
Velocity at symmetry plane under transient non-isothermal conditions in bare water model (Q = 2000 L/h, H = 0.4 m, left: ΔT = 20 °C, right: ΔT = −20 °C). (a) 20 s, (b) 65 s, (c) 100 s.
Figure 9.
Temperature profiles at symmetry plane under transient non-isothermal conditions in water model with FCD (Q = 2000 L/h, H = 0.4 m, left: ΔT = 20 °C, right: ΔT = −20 °C). (a) 20 s, (b) 80 s, (c) 200 s.
Figure 9.
Temperature profiles at symmetry plane under transient non-isothermal conditions in water model with FCD (Q = 2000 L/h, H = 0.4 m, left: ΔT = 20 °C, right: ΔT = −20 °C). (a) 20 s, (b) 80 s, (c) 200 s.
Figure 10.
Velocity at symmetry plane under transient non-isothermal conditions in water model with FCD (Q = 2000 l/h, H = 0.4 m, left: ΔT = 20 °C, right: ΔT = −20 °C). (a) 20 s, (b) 80 s, (c) 200 s.
Figure 10.
Velocity at symmetry plane under transient non-isothermal conditions in water model with FCD (Q = 2000 l/h, H = 0.4 m, left: ΔT = 20 °C, right: ΔT = −20 °C). (a) 20 s, (b) 80 s, (c) 200 s.
Figure 11.
Temperature and flow pattern in (a) Case A1—without thermal buoyancy and (b) Case A2—with thermal buoyancy.
Figure 11.
Temperature and flow pattern in (a) Case A1—without thermal buoyancy and (b) Case A2—with thermal buoyancy.
Figure 12.
(a) E-curve and (b) F-curve for Case A1—without thermal buoyancy and Case A2—with thermal buoyancy.
Figure 12.
(a) E-curve and (b) F-curve for Case A1—without thermal buoyancy and Case A2—with thermal buoyancy.
Figure 13.
Temperature and flow pattern in (a) Case B1—without thermal buoyancy and (b) Case B2—with thermal buoyancy.
Figure 13.
Temperature and flow pattern in (a) Case B1—without thermal buoyancy and (b) Case B2—with thermal buoyancy.
Figure 14.
(a) E-curve and (b) F-curve for Case B1—without thermal buoyancy and Case B2—with thermal buoyancy.
Figure 14.
(a) E-curve and (b) F-curve for Case B1—without thermal buoyancy and Case B2—with thermal buoyancy.
Figure 15.
Temperature and flow movement for three cases with different surface heat losses: (a) Case C1: 7.5 kW/m2; (b) Case C2: 15 kW/m2; (c) Case C3: 30 kW/m2.
Figure 15.
Temperature and flow movement for three cases with different surface heat losses: (a) Case C1: 7.5 kW/m2; (b) Case C2: 15 kW/m2; (c) Case C3: 30 kW/m2.
Figure 16.
(a) E-curve and (b) F-curve for different heat flux at top surface (Case C1: 7.5 kW/m2, Case C2: 15 kW/m2, Case C3: 30 kW/m2).
Figure 16.
(a) E-curve and (b) F-curve for different heat flux at top surface (Case C1: 7.5 kW/m2, Case C2: 15 kW/m2, Case C3: 30 kW/m2).
Table 1.
Summary of mathematical modelling investigations in a tundish under non-isothermal conditions.
Table 1.
Summary of mathematical modelling investigations in a tundish under non-isothermal conditions.
Reference | Model 1 | Code | Design | Numeric Model 4 | Heat Flux(kW/m2) 5 | Cond. 6 | Thermal Convection 2 | Study Focus 7 |
---|
Str. 2 | Flu. 2 | FCD 3 | Top | Wall (B/L/T) |
---|
Joo (1993) [6] | N | METFLO | 1 | S | W, D | - | - | 2.6 | | Boussinesq | TP, TC, IRR, S, |
Barreto (1996) [7] | N, P | - | 1 | S/W | - | E/k-ε | 15 | -/3.8/3.2 | 41/0.597 | Density change | RTD, TC, V |
Damle (1996) [8] | N, P | FORTRAN | 2 | S/W | - | E/k-ε | 0 | 0 | - | Density change | RTD, FR |
Vargas-Zamora (2003) [9] | N, P | - | 1 | W | TI, D | E/k-ε/Inc. | 0 | 0 | - | Density change | CIT, FP, BF, TM, TOI, TD |
Alizadeh (2008) [10] | N, P | - | 2 | W | D | Inc. | 0 | 0 | - | Mixed model | CIT |
Braun (2010) [11] | N, P | FLUENT | 2 | S/W | SR | E/k-ε | 32 | 10.91 | - | Boussinesq | FP |
Chattopadhyay (2012) [12] | N, P | FLUENT | 4 | S/W | TI | E/k-ε/Inc. | 0 | 0 | - | Boussinesq | IRR, TC, TD, TM, FP |
Qu (2012) [13] | N | - | 1 | S | TI, W, D, SR | E/k-ε | 15 | 1.4/3.2/3.8 | 41 | Density change | TM, TP, FP, IT |
Singh (2012) [14] | N | FLUENT | 1 | S | IW, TI, B, D | E/k-ε | 21 | 1.96/4.48/5.32 | - | Boussinesq | CIT, TP, FP, TC |
Sun (2012) [15] | N, P | - | 1 | S/W | TI, W, D | E/k-ε | 15 | 1.43/3.8/3.2 | 28 | Density change | FP, V, RTD |
Ling (2013) [16] | N | - | 2 | S | D, W, SR | E/k-ε/Inc | 15 | 1.4/3.2/3.8 | - | - | IRR, IND, IS |
Hamid (2013) [17] | N, P | - | 4 | S/W | TI | - | - | - | - | Density change | SM, TM, RTD |
Wang (2014) [18] | N, P | CFX | 1 | S/W | I | E/k-ε | 15 | 1.8/5.2/4.6 | 41 | Density change (S) | EMF, V, TP, TD |
Tripathi (2015) [19] | N | FLUENT | 1 | S | TI | E/k-ε | (Tuning with plant) | 41 | - | CIT, FP, IND |
Chatterjee (2017) [20,21] | N, P | FLUENT | 4 | S/W | IP | E/k-ε/Inc. | 75 | 2.5 | 41/0.6 | Boussinesq | CIT, TOI, FP, TD, TP, IRR |
Cwudziński (2017) [22] | N, P | FLUENT | 1 | S/W | D, IW | E/k-ε | 15 | 2.6/1.75/1.75 | 41 | Density change | CIT, TC, HF |
Yue (2017) [23] | N, P | CFX | 7 | S | - | E/k-ε | 15 | 1.8/4.6/5 | 37 | Density change | IH, TM, FP, V |
Tang (2018) [24] | N, P | FLUENT | 7 | S/W | TI, C | E/k-ε | 15 | 1.8/4/4 | 41 | Density change | TC, TD, TP, FP, CI, IS, IRR |
Ramirez (2018) [25] | N | FLUENT | 5 | S | IP, D | VOF/k-ε | 15 | 1.4/3.2/3.8 | 32.7 | Density change | BH, TP, IS, TC, IRR |
Xing (2019) [26] | N | FLUENT | 1 | S | C | E/k-ε | 0 | 0 | - | Density change | TM, FP, RTD, TI, IRR, HP |
Agarwal (2019) [27] | N | FLUENT | 6 | S | TI | - | 18 | 1.8 | 35 | Boussinesq | FP, TP, V, TM, RTD, TT |
Table 2.
Input parameters and boundary conditions used for computational fluid dynamics (CFD) simulations.
Table 2.
Input parameters and boundary conditions used for computational fluid dynamics (CFD) simulations.
Parameter | Water Model | Prototype |
---|
Density | 997 kg/m3 | 7020 kg/m3 |
Viscosity | 0.00089 Pa·s | 0.0062 Pa·s |
Reference pressure | 101,325 Pa | 101,325 Pa |
Heat capacity | 4200 J/kg·K | 760 J/kg·K |
Thermal conductivity | 0.6 W/m·K | 41 W/m·K |
Thermal expansion coefficient | 0.00021 1/K | 0.000127 1/K |
Liquid level | 0.4 m | 0.8 m |
Inlet (flow) | 2400 L/h | 14,000 L/h |
Inlet (temperature, ΔT) | ΔT = ±20 °C | T = 1550 °C, ΔT = 0 °C |
Wall (flow) | No slip | No slip |
Surface (flow) | Free slip | Free slip |
Wall (heat loss) | 0 kW/m2 | 2.5 kW/m2 |
Surface (heat loss) | 0 kW/m2 | 7.5,15,30 kW/m2 |
Tracer inlet (E-curve) | 1 (t ≤ 0–2 s), 0 (t > 2 s) | 1 (t ≤ 0–2 s), 0 (t > 2 s) |
Tracer inlet (F-curve) | 1 | 1 |
Table 3.
Breakthrough time of different thermocouples.
Table 3.
Breakthrough time of different thermocouples.
Time (s) | 5 | 10 | 30 | 45 | 45 | 50 | 70 | 80 | 100 | 120 |
Probe | 3 | 1 | 2 | 5 | 6 | 7 | 10 | 9 | 8 | 4 |
Table 4.
RTD analysis for Case A1 and Case A2.
Table 4.
RTD analysis for Case A1 and Case A2.
Case | Mean RT s | t(min) s | t(max) s | t(0.2) s | t(0.8) s | Intermixing Time, s | Vd/V % | Vp/V % | Vm/V % |
---|
Case A1 | 469 | 70 | 243 | 228 | 676 | 448 | 9 | 14 | 77 |
Case A2 | 457 | 88 | 194 | 195 | 673 | 478 | 11 | 17 | 72 |
Table 5.
RTD analysis for Case B1 and Case B2.
Table 5.
RTD analysis for Case B1 and Case B2.
Case | Mean RT s | t(min) s | t(max) s | t(0.2) s | t(0.8) s | Intermixing Time, s | Vd/V % | Vp/V % | Vm/V % |
---|
Case B1 | 419 | 129 | 291 | 236 | 543 | 307 | 19 | 25 | 56 |
Case B2 | 425 | 143 | 243 | 233 | 567 | 334 | 18 | 28 | 55 |
Table 6.
Computational RTD parameters and the volume fraction of flow for Case C1, C2 and C3.
Table 6.
Computational RTD parameters and the volume fraction of flow for Case C1, C2 and C3.
Case | Mean RT s | t(min) s | t(max) s | t(0.2) s | t(0.8) s | Intermixing Time, s | Vd/V % | Vp/V % | Vm/V % |
---|
Case C1 | 470 | 99 | 214 | 217 | 686 | 469 | 9 | 19 | 72 |
Case C2 | 457 | 88 | 194 | 195 | 673 | 478 | 11 | 17 | 72 |
Case C3 | 438 | 77 | 162 | 179 | 653 | 474 | 15 | 15 | 70 |