The State of Starch/Hydroxyapatite Composite Scaffold in Bone Tissue Engineering with Consideration for Dielectric Measurement as an Alternative Characterization Technique
Abstract
:1. Introduction
2. Starch/Hydroxyapatite Composite Scaffold
3. Starch as Particulate Pore Former
4. The Effect of Porosity in Ceramic over Microwave Dielectric Measurement
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vacanti, J.P.; Langer, R. Tissue engineering: The design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 1999, 354, 32–34. [Google Scholar] [CrossRef]
- Nerem, R.M.; Schutte, S.C. The Challenge of Imitating Nature. In Principles of Tissue Engineering, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 9–24. ISBN 9780123983589. [Google Scholar]
- Sabir, M.I.; Xu, X.; Li, L. A review on biodegradable polymeric materials for bone tissue engineering applications. J. Mater. Sci. 2009, 44, 5713–5724. [Google Scholar] [CrossRef]
- Iijima, K.; Otsuka, H. Cell Scaffolds for Bone Tissue Engineering. Bioengineering 2020, 7, 119. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, M.; Amant, F.; Biankin, A.V.; Budinská, E.; Byrne, A.T.; Caldas, C.; Clarke, R.B.; de Jong, S.; Jonkers, J.; Mælandsmo, G.M.; et al. Patient-derived Xenograft models: An emerging platform for translational cancer research. Cancer Discov. 2014, 4, 998–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nooeaid, P.; Salih, V.; Beier, J.P.; Boccaccini, A.R. Osteochondral tissue engineering: Scaffolds, stem cells and applications. J. Cell. Mol. Med. 2012, 16, 2247–2270. [Google Scholar] [CrossRef]
- Ahn, H.; Patel, R.R.; Hoyt, A.J.; Lin, A.S.P.; Torstrick, F.B.; Guldberg, R.E.; Frick, C.P.; Carpenter, R.D.; Yakacki, C.M.; Willett, N.J. Biological evaluation and finite-element modeling of porous poly(para-phenylene) for orthopaedic implants. Acta Biomater. 2018, 72, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Jiang, D.; Zhang, Z.; Chen, Y.; Yang, Z.; Zhang, J.; Shi, J.; Wang, X.; Yu, J. Biomimetic Nanosilica–Collagen Scaffolds for In Situ Bone Regeneration: Toward a Cell-Free, One-Step Surgery. Adv. Mater. 2019, 31, 1904341. [Google Scholar] [CrossRef]
- Wagner, J.M.; Conze, N.; Lewik, G.; Wallner, C.; Brune, J.C.; Dittfeld, S.; Jaurich, H.; Becerikli, M.; Dadras, M.; Harati, K.; et al. Bone allografts combined with adipose-derived stem cells in an optimised cell/volume ratio showed enhanced osteogenesis and angiogenesis in a murine femur defect model. J. Mol. Med. 2019, 97, 1439–1450. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.H. Autologous bone graft: Is it still the gold standard? Injury 2021. [Google Scholar] [CrossRef] [PubMed]
- Meyer, U.; Joos, U.; Wiesmann, H.P. Biological and biophysical principles in extracorporal bone tissue engineering. Part I. Int. J. Oral Maxillofac. Surg. 2004, 33, 325–332. [Google Scholar] [CrossRef]
- Lang, N.P.; Hämmerle, C.H.F.; Brägger, U.; Lehmann, B.; Nyman, S.R. Guided tissue regeneration in jawbone defects prior to implant placement. Clin. Oral Implant. Res. 1994, 5, 92–97. [Google Scholar] [CrossRef]
- Meyer, U.; Kruse-Lösler, B.; Wiesmann, H.P. Principles of bone formation driven by biophysical forces in craniofacial surgery. Br. J. Oral Maxillofac. Surg. 2006, 44, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Poniatowski, L.A.; Wojdasiewicz, P.; Gasik, R.; Szukiewicz, D. Transforming growth factor beta family: Insight into the role of growth factors in regulation of fracture healing biology and potential clinical applications. Mediat. Inflamm. 2015, 2015, 137823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, U.; Handschel, J.; Wiesmann, H.P.; Meyer, T. (Eds.) Fundamentals of Tissue Engineering and Regenerative Medicine; Springer: Berlin/Heidelberg, Germany, 2009; pp. 539–549. ISBN 978-3-540-77754-0. [Google Scholar]
- Mitrin, B.I.; Chapek, S.V.; Sadyrin, E.V.; Swain, M.V. Mechanical properties and failure mechanisms of 3D-printed PLA scaffolds: A preliminary study. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1029, 012074. [Google Scholar] [CrossRef]
- Naghieh, S.; Karamooz Ravari, M.R.; Badrossamay, M.; Foroozmehr, E.; Kadkhodaei, M. Numerical investigation of the mechanical properties of the additive manufactured bone scaffolds fabricated by FDM: The effect of layer penetration and post-heating. J. Mech. Behav. Biomed. Mater. 2016, 59, 241–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avilov, A.V.; Avilova, N.V.; Tananakina, E.S.; Sadyrin, E.V. Modelling of the stress-strain state of the lower jaw. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1029, 012071. [Google Scholar] [CrossRef]
- Hollister, S.J. Porous scaffold design for tissue engineering. Nat. Mater. 2005, 4, 518–524. [Google Scholar] [CrossRef]
- Chen, G.; Ushida, T.; Tateishi, T. Scaffold design for tissue engineering. Macromol. Biosci. 2002, 2, 67–77. [Google Scholar] [CrossRef]
- Putlyaev, V.I.; Safronova, T.V. A new generation of calcium phosphate biomaterials: The role of phase and chemical compositions. Glas. Ceram. 2006, 63, 99–102. [Google Scholar] [CrossRef]
- Razali, K.R.; Nasir, N.M.; Cheng, E.M.; Mamat, N.; Mazalan, M.; Wahab, Y.; Roslan, M.M. The effect of gelatin and hydroxyapatite ratios on the scaffolds’ porosity and mechanical properties. In Proceedings of the Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, Malaysia, 8–10 December 2014; pp. 256–259. [Google Scholar]
- Yamada, S.; Yamamoto, K.; Ikeda, T.; Yanagiguchi, K.; Hayashi, Y. Potency of fish collagen as a scaffold for regenerative medicine. BioMed Res. Int. 2014, 2014, 302932. [Google Scholar] [CrossRef]
- Priya, B.; Gupta, V.K.; Pathania, D.; Singha, A.S. Synthesis, characterisation and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohydr. Polym. 2014, 109, 171–179. [Google Scholar] [CrossRef]
- Gomes, M.E.; Holtorf, H.L.; Reis, R.L.; Mikos, A.G. Influence of the porosity of starch-based fiber mesh scaffolds on the proliferation and osteogenic differentiation of bone marrow stromal cells cultured in a flow perfusion bioreactor. Tissue Eng. 2006, 12, 801–809. [Google Scholar] [CrossRef] [Green Version]
- Saravanan, S.; Leena, R.S.; Selvamurugan, N. Chitosan based biocomposite scaffolds for bone tissue engineering. Int. J. Biol. Macromol. 2016, 93, 1354–1365. [Google Scholar] [CrossRef]
- Xie, F.; Pollet, E.; Halley, P.J.; Averous, L. Starch-based nano-biocomposites. Prog. Polym. Sci. 2013, 38, 1590–1628. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Xie, F.; Yu, L.; Chen, L.; Li, L. Thermal processing of starch-based polymers. Prog. Polym. Sci. 2009, 34, 1348–1368. [Google Scholar] [CrossRef]
- Ito, A.; Mase, A.; Takizawa, Y.; Shinkai, M.; Honda, H.; Hata, K.-I.; Ueda, M.; Kobayashi, T. Transglutaminase-mediated gelatin matrices incorporating cell adhesion factors as a biomaterial for tissue engineering. J. Biosci. Bioeng. 2003, 95, 196–199. [Google Scholar] [CrossRef]
- Mohammad, N.F.; Othman, R.; Yeoh, F.-Y. Nanoporous hydroxyapatite preparation methods for drug delivery applications. Rev. Adv. Mater. Sci. 2014, 38, 138–147. [Google Scholar]
- Feroz, S.; Khan, A.S. Fluoride-substituted hydroxyapatite. In Handbook of Ionic Substituted Hydroxyapatites; Elsevier: Amsterdam, The Netherlands, 2019; pp. 175–196. ISBN 9780081028346. [Google Scholar]
- Huang, J.; Best, S. Ceramic biomaterials for tissue engineering. In Tissue Engineering Using Ceramics and Polymers, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 3–34. ISBN 9780857097163. [Google Scholar]
- Farzadi, A.; Solati-Hashjin, M.; Bakhshi, F.; Aminian, A. Synthesis and characterisation of hydroxyapatite/β-tricalcium phosphate nanocomposites using microwave irradiation. Ceram. Int. 2011, 37, 65–71. [Google Scholar] [CrossRef]
- Ramesh, S.; Natasha, A.N.; Tan, C.Y.; Bang, L.T.; Niakan, A.; Purbolaksono, J.; Chandran, H.; Ching, C.Y.; Ramesh, S.; Teng, W.D. Characteristics and properties of hydoxyapatite derived by sol–gel and wet chemical precipitation methods. Ceram. Int. 2015, 41, 10434–10441. [Google Scholar] [CrossRef]
- Mahabole, M.P.; Aiyer, R.C.; Ramakrishna, C.V.; Sreedhar, B.; Khairnar, R.S. Synthesis, characterisation and gas sensing property of hydroxyapatite ceramic. Bull. Mater. Sci. 2005, 28, 535–545. [Google Scholar] [CrossRef] [Green Version]
- Cortizo, M.S.; Belluzo, M.S. Biodegradable polymers for bone tissue engineering. In Industrial Applications of Renewable Biomass Products: Past, Present and Future; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 47–74. ISBN 9783319612881. [Google Scholar]
- Wei, M.; Ruys, A.J.; Swain, M.V.; Kim, S.H.; Milthorpe, B.K.; Sorrell, C.C. Interfacial bond strength of electrophoretically deposited hydroxyapatite coatings on metals. J. Mater. Sci. Mater. Med. 1999, 10, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.K.; Bhattacharyya, S.; Sarkar, D. Preparation of porous scaffold from hydroxyapatite powders. Mater. Sci. Eng. C 2011, 31, 1240–1244. [Google Scholar] [CrossRef]
- Koski, C.; Onuike, B.; Bandyopadhyay, A.; Bose, S. Starch-hydroxyapatite composite bone scaffold fabrication utilising a slurry extrusion-based solid freeform fabricator. Addit. Manuf. 2018, 24, 47–59. [Google Scholar] [CrossRef]
- Tang, X.; Alavi, S. Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydr. Polym. 2011, 85, 7–16. [Google Scholar] [CrossRef]
- Cano, A.; Chafer, M.; Chiralt, A.; Gonzalez-Martinez, C. Strategies to Improve the Functionality of Starch-Based Films. In Handbook of Composites from Renewable Materials; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; Volume 1–8, pp. 311–337. [Google Scholar]
- Copeland, L.; Blazek, J.; Salman, H.; Tang, M.C. Form and functionality of starch. Food Hydrocoll. 2009, 23, 1527–1534. [Google Scholar] [CrossRef]
- Lindeboom, N.; Chang, P.R.; Tyler, R.T. Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: A review. Starch/Staerke 2004, 56, 89–99. [Google Scholar] [CrossRef]
- Liu, G.; Gu, Z.; Hong, Y.; Cheng, L.; Li, C. Structure, functionality and applications of debranched starch: A review. Trends Food Sci. Technol. 2017, 63, 70–79. [Google Scholar] [CrossRef]
- Torres, F.G.; Boccaccini, A.R.; Troncoso, O.P. Microwave processing of starch-based porous structures for tissue engineering scaffolds. J. Appl. Polym. Sci. 2007, 103, 1332–1339. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y.; Ju, J.; Yan, H.; Huang, X.; Tan, Y. Advances in Halloysite Nanotubes–Polysaccharide Nanocomposite Preparation and Applications. Polymers 2019, 11, 987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadjadi, M.S.; Meskinfam, M.; Jazdarreh, H. Hydroxyapatite-Starch Nano Biocomposites Synthesis and Characterization. Int. J. Nano Dimens. 2010, 1, 57–63. [Google Scholar]
- Van Landuyt, P.; Li, F.; Keustermans, J.P.; Streydio, J.M.; Delannay, F.; Munting, E. The influence of high sintering temperatures on the mechanical properties of hydroxylapatite. J. Mater. Sci. Mater. Med. 1995, 6, 8–13. [Google Scholar] [CrossRef]
- Ragunathan, S.; Govindasamy, G.; Raghul, D.R.; Karuppaswamy, M.; VijayachandraTogo, R.K. Hydroxyapatite reinforced natural polymer scaffold for bone tissue regeneration. Mater. Today Proc. 2019, 23, 111–118. [Google Scholar] [CrossRef]
- Beh, C.Y.; Cheng, E.M.; Mohd Nasir, N.F.; Eng, S.K.; Abdul Majid, M.S.; Ridzuan, M.J.M.; Khor, S.F.; Khalid, N.S. Dielectric and material analysis on physicochemical activity of porous hydroxyapatite/cornstarch composites. Int. J. Biol. Macromol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Beh, C.Y.; Cheng, E.M.; Mohd Nasir, N.F.; Abdul Majid, M.S.; Mohd Roslan, M.R.; You, K.Y.; Khor, S.F.; Ridzuan, M.J.M. Fabrication and characterisation of three-dimensional porous cornstarch/n-HAp biocomposite scaffold. Bull. Mater. Sci. 2020, 43, 1–9. [Google Scholar] [CrossRef]
- Dutta, R.C.; Dey, M.; Dutta, A.K.; Basu, B. Competent processing techniques for scaffolds in tissue engineering. Biotechnol. Adv. 2017, 35, 240–250. [Google Scholar] [CrossRef]
- Pramanik, S.; Agarwala, P.; Vasudevan, K.; Sarkar, K. Human-lymphocyte cell friendly starch–hydroxyapatite biodegradable composites: Hydrophilic mechanism, mechanical, and structural impact. J. Appl. Polym. Sci. 2020, 137, 48913. [Google Scholar] [CrossRef]
- Koski, C.; Bose, S. Effects of amylose content on the mechanical properties of starch-hydroxyapatite 3D printed bone scaffolds. Addit. Manuf. 2019, 30, 100817. [Google Scholar] [CrossRef]
- Roslan, M.R.; Nasir, N.F.M.; Khalid, M.F.A.; Cheng, E.M.; Amin, N.A.M.; Mohammad, N.; Beh, C.Y.; Majid, M.S.A. The Characterisation of Bario Rice Starch-nanoHA Scaffolds using SEM and Dielectric Measurement. J. Phys. Conf. Ser. 2019, 1372, 012019. [Google Scholar] [CrossRef] [Green Version]
- Miculescu, F.; Maidaniuc, A.; Miculescu, M.; Dan Batalu, N.; Catalin Ciocoiu, R.; Voicu, Ş.I.; Stan, G.E.; Thakur, V.K. Synthesis and Characterization of Jellified Composites from Bovine Bone-Derived Hydroxyapatite and Starch as Precursors for Robocasting. ACS Omega 2018, 3, 1338–1349. [Google Scholar] [CrossRef]
- Ahmed, Y.M.Z.; Ewais, E.M.M.; El-Sheikh, S.M. Porous hydroxyapatite ceramics fabricated via starch consolidation technique. J. Ceram. Process. Res. 2016, 16, 1–10. [Google Scholar]
- Castro-Ceseña, A.B.; Camacho-Villegas, T.A.; Lugo-Fabres, P.H.; Novitskaya, E.E.; McKittrick, J.; Licea-Navarro, A. Effect of starch on the mechanical and in vitro properties of collagen-hydroxyapatite sponges for applications in dentistry. Carbohydr. Polym. 2016, 148, 78–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadisi, Z.; Nourmohammadi, J.; Mohammadi, J. Composite of porous starch-silk fibroin nanofiber-calcium phosphate for bone regeneration. Ceram. Int. 2015, 41, 10745–10754. [Google Scholar] [CrossRef]
- Gomes, M.E.; Godinho, J.S.; Tchalamov, D.; Cunha, A.M.; Reis, R.L. Alternative tissue engineering scaffolds based on starch: Processing methodologies, morphology, degradation and mechanical properties. Mater. Sci. Eng. C 2002, 20, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, A.P.; Joshi, M.K.; Maharjan, B.; Ko, S.W.; Kim, J.I.; Park, C.H.; Kim, C.S. Engineering a novel bilayer membrane for bone defects regeneration. Mater. Lett. 2016, 180, 268–272. [Google Scholar] [CrossRef]
- Sears, N.A.; Seshadri, D.R.; Dhavalikar, P.S.; Cosgriff-Hernandez, E. A Review of Three-Dimensional Printing in Tissue Engineering. Tissue Eng. Part B Rev. 2016, 22, 298–310. [Google Scholar] [CrossRef] [PubMed]
- Sobral, J.M.; Caridade, S.G.; Sousa, R.A.; Mano, J.F.; Reis, R.L. Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater. 2011, 7, 1009–1018. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.Y.; Jeong, L.; Kang, Y.O.; Lee, S.J.; Park, W.H. Electrospinning of polysaccharides for regenerative medicine. Adv. Drug Deliv. Rev. 2009, 61, 1020–1032. [Google Scholar] [CrossRef]
- Ao, C.; Niu, Y.; Zhang, X.; He, X.; Zhang, W.; Lu, C. Fabrication and characterisation of electrospun cellulose/nano-hydroxyapatite nanofibers for bone tissue engineering. Int. J. Biol. Macromol. 2017, 97, 568–573. [Google Scholar] [CrossRef]
- Ahmed, Y.M.Z.; Ewais, E.M.M.; El-Sheikh, S.M. Potato starch consolidation of aqueous HA suspension. J. Asian Ceram. Soc. 2015, 3, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, Y.M.Z.; Ewais, E.M.M.; El-Sheikh, S.M. Effect of dispersion parameters on the consolidation of starch-loaded hydroxyapatite slurry. Process. Appl. Ceram. 2014, 8, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Chim, H.; Hutmacher, D.W.; Chou, A.M.; Oliveira, A.L.; Reis, R.L.; Lim, T.C.; Schantz, J.T. A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering. Int. J. Oral Maxillofac. Surg. 2006, 35, 928–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owen, R.; Sherborne, C.; Paterson, T.; Green, N.H.; Reilly, G.C.; Claeyssens, F. Emulsion templated scaffolds with tunable mechanical properties for bone tissue engineering. J. Mech. Behav. Biomed. Mater. 2016, 54, 159–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronca, D.; Langella, F.; Chierchia, M.; D’Amora, U.; Russo, T.; Domingos, M.; Gloria, A.; Bartolo, P.; Ambrosio, L. Bone Tissue Engineering: 3D PCL-based Nanocomposite Scaffolds with Tailored Properties. Procedia CIRP 2016, 49, 51–54. [Google Scholar] [CrossRef]
- Chen, Y.; Frith, J.E.; Dehghan-Manshadi, A.; Attar, H.; Kent, D.; Soro, N.D.M.; Bermingham, M.J.; Dargusch, M.S. Mechanical properties and biocompatibility of porous titanium scaffolds for bone tissue engineering. J. Mech. Behav. Biomed. Mater. 2017, 75, 169–174. [Google Scholar] [CrossRef]
- Mohd-Roslan, M.R.; Mohd-Nasir, N.F.; Cheng, E.M.; Mamat, N. The characterisation of nano HA-Balik Wangi rice starch tissue engineering scaffold. Int. J. Mech. Mechatronics Eng. 2016, 16, 36–41. [Google Scholar]
- Hori, N.A.F.M.; Nasir, N.F.M.; Amin, N.A.M.; Cheng, E.M.; Sohaimi, S.N. The fabrication and characterisation of Hydroxyapatite-Ubi gadong starch based tissue engineering scaffolds. In Proceedings of the 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, Malaysia, 4–8 December 2016; pp. 220–225. [Google Scholar]
- Mohd-Nasir, N.F.; Sucinda, A.; Cheng, E.M.; Majid, M.S.A.; Amin, N.A.M.; Rahim, R.; Jusoh, M.; Abdul-Khalid, M.F. The Study of Brown Rice Starch Effect On Hydroxyapatite Composites. Int. J. Eng. Technol. 2018, 7, 69–72. [Google Scholar] [CrossRef]
- Mahammod, B.P.; Barua, E.; Deb, P.; Deoghare, A.B.; Pandey, K.M. Investigation of Physico-mechanical Behavior, Permeability and Wall Shear Stress of Porous HA/PMMA Composite Bone Scaffold. Arab. J. Sci. Eng. 2020, 45, 5505–5515. [Google Scholar] [CrossRef]
- Chen, X.; Fan, H.; Deng, X.; Wu, L.; Yi, T.; Gu, L.; Zhou, C.; Fan, Y.; Zhang, X. Scaffold Structural Microenvironmental Cues to Guide Tissue Regeneration in Bone Tissue Applications. Nanomaterials 2018, 8, 960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tawfick, S.; De Volder, M.; Copic, D.; Park, S.J.; Oliver, C.R.; Polsen, E.S.; Roberts, M.J.; Hart, A.J. Engineering of Micro- and Nanostructured Surfaces with Anisotropic Geometries and Properties. Adv. Mater. 2012, 24, 1628–1674. [Google Scholar] [CrossRef] [PubMed]
- Skoog, S.A.; Kumar, G.; Narayan, R.J.; Goering, P.L. Biological responses to immobilised microscale and nanoscale surface topographies. Pharmacol. Ther. 2018, 182, 33–55. [Google Scholar] [CrossRef]
- Cano, A.; Jiménez, A.; Cháfer, M.; Gónzalez, C.; Chiralt, A. Effect of amylose:amylopectin ratio and rice bran addition on starch films properties. Carbohydr. Polym. 2014, 111, 543–555. [Google Scholar] [CrossRef] [Green Version]
- García, N.L.; Famá, L.; D’Accorso, N.B.; Goyanes, S. Biodegradable starch nanocomposites. Adv. Struct. Mater. 2015, 75, 17–77. [Google Scholar] [CrossRef]
- Misman, M.A.; Azura, A.R.; Hamid, Z.A.A. Physico-chemical properties of solvent based etherification of sago starch. Ind. Crops Prod. 2015, 65, 397–405. [Google Scholar] [CrossRef]
- Mustaffa, R.; Yusof, M.R.M.; Besar, I. Porous hydroxyapatite composite with alumina for bone repair. In Proceedings of the RnD Seminar 2010: Research and Development Seminar 2010, Bangi, Malaysia, 12–15 October 2010. [Google Scholar]
- Cuo, Z.; Zhang, J.; Yu, B.; Peng, S.; Liu, H.; Chen, Y. Spherical Al2O3-coated mullite fibrous ceramic membrane and its applications to high-efficiency gas filtration. Sep. Purif. Technol. 2019, 215, 368–377. [Google Scholar] [CrossRef]
- Twigg, M.V.; Richardson, J.T. Fundamentals and applications of structured ceramic foam catalysts. Ind. Eng. Chem. Res. 2007, 46, 4166–4177. [Google Scholar] [CrossRef]
- Legeros, R.Z.; Craig, R.G. Strategies to affect bone remodeling: Osteointegration. J. Bone Miner. Res. 2009, 8, S583–S596. [Google Scholar] [CrossRef] [PubMed]
- Miculescu, F.; Maidaniuc, A.; Voicu, S.I.; Thakur, V.K.; Stan, G.E.; Ciocan, L.T. Progress in Hydroxyapatite-Starch Based Sustainable Biomaterials for Biomedical Bone Substitution Applications. ACS Sustain. Chem. Eng. 2017, 5, 8491–8512. [Google Scholar] [CrossRef] [Green Version]
- Živcová, Z.; Gregorová, E.; Pabst, W.; Smith, D.S.; Michot, A.; Poulier, C. Thermal conductivity of porous alumina ceramics prepared using starch as a pore-forming agent. J. Eur. Ceram. Soc. 2009, 29, 347–353. [Google Scholar] [CrossRef]
- Olhero, S.M.; Tarì, G.; Coimbra, M.A.; Ferreira, J.M.F. Synergy of polysaccharide mixtures in gelcasting of alumina. J. Eur. Ceram. Soc. 2000, 20, 423–429. [Google Scholar] [CrossRef]
- Xu, G.; Chen, Z.; Zhang, X.; Cui, H.; Zhang, Z.; Zhan, X. Preparation of porous Al2TiO5-Mullite ceramic by starch consolidation casting and its corrosion resistance characterisation. Ceram. Int. 2016, 42, 14107–14112. [Google Scholar] [CrossRef]
- Zhang, R.; Han, B.; Fang, D.; Wang, Y. Porous Y2SiO5 ceramics with a centrosymmetric structure produced by freeze casting. Ceram. Int. 2015, 41, 11517–11522. [Google Scholar] [CrossRef]
- Černý, M.; Chlup, Z.; Strachota, A.; Svítilová, J.; Schweigstillová, J.; Halasová, M.; Rýglová, Š. Si-O-C ceramic foams derived from polymethylphenylsiloxane precursor with starch as foaming agent. J. Eur. Ceram. Soc. 2015, 35, 3427–3436. [Google Scholar] [CrossRef]
- Marques, C.F.; Lemos, A.; Vieira, S.I.; Da Cruz, E.; Silva, O.A.B.; Bettencourt, A.; Ferreira, J.M.F. Antibiotic-loaded Sr-doped porous calcium phosphate granules as multifunctional bone grafts. Ceram. Int. 2016, 42, 2706–2716. [Google Scholar] [CrossRef]
- Kim, S.E.; Tiwari, A.P. Three dimensional polycaprolactone/cellulose scaffold containing calcium-based particles: A new platform for bone regeneration. Carbohydr. Polym. 2020, 250, 116880. [Google Scholar] [CrossRef] [PubMed]
- DiRienzo, A.L.; Yakacki, C.M.; Frensemeier, M.; Schneider, A.S.; Safranski, D.L.; Hoyt, A.J.; Frick, C.P. Porous poly(para-phenylene) scaffolds for load-bearing orthopedic applications. J. Mech. Behav. Biomed. Mater. 2014, 30, 347–357. [Google Scholar] [CrossRef]
- Marzec, E.; Pietrucha, K. The effect of different methods of cross-linking of collagen on its dielectric properties. Biophys. Chem. 2008, 132, 89–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raveendran, A.; Sebastian, M.T.; Raman, S. Applications of Microwave Materials: A Review. J. Electron. Mater. 2019, 48, 2601–2634. [Google Scholar] [CrossRef] [Green Version]
- Penn, S.J.; Alford, N.M.N.; Templeton, A.; Wang, X.; Xu, M.; Reece, M.; Schrapel, K. Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Am. Ceram. Soc. 1997, 80, 1885–1888. [Google Scholar] [CrossRef]
- Lanagan, M.; Guo, J.; Randall, C. Effect of porosity and microstructure on the microwave dielectric properties of rutile. Mater. Lett. 2017, 200, 101–104. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhang, Y.; Gong, H.; Wang, X.; Sun, H. Effects of Y2O3-MgO nanopowders content on mechanical and dielectric properties of porous BN/Si3N4 composites. Ceram. Int. 2015, 41, 3618–3623. [Google Scholar] [CrossRef]
- Bouletreau, P.J.; Warren, S.M.; Longaker, M.T. The molecular biology of distraction osteogenesis. J. Cranio-Maxillofac. Surg. 2002, 30, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bouletreau, P.J.; Warren, S.M.; Spector, J.A.; Peled, Z.M.; Gerrets, R.P.; Greenwald, J.A.; Longaker, M.T. Hypoxia and VEGF Up-Regulate BMP-2 mRNA and Protein Expression in Microvascular Endothelial Cells: Implications for Fracture Healing. Plast. Reconstr. Surg. 2002, 109, 2384–2397. [Google Scholar] [CrossRef] [PubMed]
- Razali, K.R.; Mohd Nasir, N.F.; Cheng, E.M.; Tan, M.K.; Zakaria, A.; Mamat, N. Preliminary Analysis of Nha Based Tissue Engineering Scaffold Dielectric Characteristics. ARPN J. Eng. Appl. Sci. 2016, 11, 4987–4990. [Google Scholar]
- Chong You, B.; Ee Meng, C.; Abu Bakar, S.; Fazli Mohd Nasir, N.; Swee Kheng, E.; Shukry Abdul Majid, M.; Ridzuan Mohd Jamir, M.; Shing Fhan, K. Microwave Dielectric Analysis on Porous Hydroxyapatite/Starch Composites with Various Ratio of Hydroxyapatite to Starch. IOP Conf. Ser. Mater. Sci. Eng. 2020, 864, 012175. [Google Scholar] [CrossRef]
- Fazli Mohd Nasir, N.; Ee Meng, C.; Jamal, N.; Riza Mohd Roslan, M.; Aerina Fitri Mohd Hoři, N.; Chong You, B.; Jusoh, M.; Azizan, M.; Zakimi Zakaria, M.; Farid Abdul Khalid, M. The Dielectric Characterization of Tapioca Starch—Ha Tissue Scaffold. In IOP Conference Series: Materials Science and Engineering; IOP Publishing Ltd.: Bristol, UK, 2020; Volume 864, p. 012161. [Google Scholar]
Technique | Pore Size/Porosity | Findings | Reference |
---|---|---|---|
Solvent casting and particulate leaching | Pores were formed with a size of 163 mm |
| [49] |
Spin coating | Interconnecting porosity appeared |
| [53] |
Solvent casting and particulate leaching | Micropores size range from 622 µm to 966 µm, while macropores size range from 3683 µm to 5517 µm |
| [50] |
3D printing | Little microporosity suggesting the scaffold is fully dense |
| [54] |
Solvent casting and particulate leaching | Porosity obtained in range 163 µm to 282 µm |
| [55] |
3D printing | Little microporosity suggesting the scaffold is fully dense |
| [39] |
Freeze drying | Porosity up to 95% with pore size in the 80 µm to 292 µm range |
| [56] |
Solvent casting | The highest porosity can be achieved up to 57% contained 30 wt.% potato starch sintered at 1250 °C |
| [57] |
Freeze drying | Pore size between 150 µm to 200 µm |
| [58] |
Electrospinning | Porosity after incorporation with silk fibroin nanofiber from 6027% to 6714% |
| [59] |
Pore Size (μm) | Biological Relevance |
---|---|
<1 | Protein interaction and adsorption |
1–20 | Initial cell attachment |
20–100 | Cell proliferation, migration |
100–1000 | Cell growth and collateral bone growth |
>1000 | Essential for maintenance and programming |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Roslan, M.R.; Mohd Kamal, N.L.; Abdul Khalid, M.F.; Mohd Nasir, N.F.; Cheng, E.M.; Beh, C.Y.; Tan, J.S.; Mohamed, M.S. The State of Starch/Hydroxyapatite Composite Scaffold in Bone Tissue Engineering with Consideration for Dielectric Measurement as an Alternative Characterization Technique. Materials 2021, 14, 1960. https://doi.org/10.3390/ma14081960
Mohd Roslan MR, Mohd Kamal NL, Abdul Khalid MF, Mohd Nasir NF, Cheng EM, Beh CY, Tan JS, Mohamed MS. The State of Starch/Hydroxyapatite Composite Scaffold in Bone Tissue Engineering with Consideration for Dielectric Measurement as an Alternative Characterization Technique. Materials. 2021; 14(8):1960. https://doi.org/10.3390/ma14081960
Chicago/Turabian StyleMohd Roslan, Mohd Riza, Nadhiya Liyana Mohd Kamal, Muhammad Farid Abdul Khalid, Nashrul Fazli Mohd Nasir, Ee Meng Cheng, Chong You Beh, Joo Shun Tan, and Mohd Shamzi Mohamed. 2021. "The State of Starch/Hydroxyapatite Composite Scaffold in Bone Tissue Engineering with Consideration for Dielectric Measurement as an Alternative Characterization Technique" Materials 14, no. 8: 1960. https://doi.org/10.3390/ma14081960
APA StyleMohd Roslan, M. R., Mohd Kamal, N. L., Abdul Khalid, M. F., Mohd Nasir, N. F., Cheng, E. M., Beh, C. Y., Tan, J. S., & Mohamed, M. S. (2021). The State of Starch/Hydroxyapatite Composite Scaffold in Bone Tissue Engineering with Consideration for Dielectric Measurement as an Alternative Characterization Technique. Materials, 14(8), 1960. https://doi.org/10.3390/ma14081960