Effect of Ni-Cr Alloy Surface Abrasive Blasting on Its Wettability by Liquid Ceramics
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Czepułkowska, W.; Wołowiec-Korecka, E.; Klimek, L. The role of mechanical, chemical and physical bonds in metal-ceramic bond strength. Arch. Mater. Sci. Eng. 2018, 92, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Makhija, S.K.; Lawson, N.C.; Gilbert, G.H.; Litaker, M.S.; McClelland, J.A.; Louis, D.R.; Gordan, V.V.; Pihlstrom, D.J.; Meyerowitz, C.; Mungia, R.; et al. Dentist material selection for single-unit crowns: Findings from the National Dental Practice-Based Research Network. J. Dent. 2016, 55, 40–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haugen, H.J.; Soltvedt, B.M.; Nguyen, P.N.; Ronold, H.J.; Johnsen, G.F. Discrepancy in alloy composition of imported and non-imported porcelain-fused-to-metal (PFM) crowns produced by Norwegian dental laboratories. Biomater. Investig. Dent. 2020, 7, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Jamal, S.; Ghafoor, R.; Khan, F.R.; Zafar, K. Five year evaluation of the complications observed in porcelain fused to metal (PFM) crowns placed at a university hospital. J. Pak. Med. Assoc. 2020, 70, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, G.; Polat, H.; Polat, M.; Coskun, G. Effect of various treatment and glazing (coating) techniques on the roughness and wettability of ceramic dental restorative surfaces. Colloids Surf. B Biointerfaces 2006, 53, 254–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Melo, R.M.; Travassos, A.C.; Neisser, M.P. Shear bond strengths of a ceramic system to alternative metal alloys. J. Prosthet. Dent. 2005, 93, 64–69. [Google Scholar] [CrossRef]
- Külünk, T.; Kurt, M.; Ural, Ç.; Külünk, Ş.; Baba, S. Effect of different air-abrasion particles on metal-ceramic bond strength. J. Dent. Sci. 2011, 6, 140–146. [Google Scholar] [CrossRef] [Green Version]
- Lopes, S.C.; Pagnano, V.O.; De Almeida Rollo, J.M.D.; Leal, M.B.; Bezzon, O.L. Correlation between metal-ceramic bond strength and coefficient of linear thermal expansion difference. J. Appl. Oral Sci. 2009, 17, 122–128. [Google Scholar] [CrossRef]
- Schweitzer, D.M.; Goldstein, G.R.; Ricci, J.L.; Silva, N.R.F.A.; Hittelman, E.L. Comparison of bond strength of a pressed ceramic fused to metal versus feldspathic porcelain fused to metal. J. Prosthodont. 2005, 14, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Aboras, M.M.; Muchtar, A.; Azhari, C.H.; Yahaya, N. Types of Failures in Porcelain-Fused-to-Metal Dental Restoration; Lacković, I., Vasic, D., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 45, pp. 345–348. [Google Scholar]
- Ozcan, M. Fracture reasons in ceramic-fused-to-metal restorations. J. Oral Rehabil. 2003, 30, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Mühlemann, S.; Lakha, T.; Jung, R.E.; Hämmerle, C.H.F.; Benic, G.I. Prosthetic outcomes and clinical performance of CAD-CAM monolithic zirconia versus porcelain-fused-to-metal implant crowns in the molar region: 1-year results of a RCT. Clin. Oral Implants Res. 2020, 31, 856–864. [Google Scholar] [CrossRef]
- Ren, W.; Yang, L.; Du, F.; Huang, J.; Huang, Z.; Liang, T.; Li, F.; Li, Y.; Jiang, Q.; Yang, X.; et al. Chipped porcelain-fused-to-metal restoration repaired by the novel self-glazed zirconia veneering with a digital workflow. Adv. Appl. Ceram. 2020, 119, 317–322. [Google Scholar] [CrossRef]
- Pietnicki, K.; Wołowiec, E.; Klimek, L. The effect of abrasive blasting on the strength of a joint between dental porcelain and metal base. Acta Bioeng. Biomech. 2014, 16, 63–68. [Google Scholar]
- Czepułkowska, W.; Wołowiec-Korecka, E.; Klimek, L. The condition of Ni-Cr alloy surface after abrasive blasting with various parameters. J. Mater. Eng. Perform. 2019, 29, 1439–1444. [Google Scholar] [CrossRef] [Green Version]
- Pietnicki, K.; Wołowiec-Korecka, E.; Klimek, L. Modeling strength of the connection the metal substrate to the dental ceramics depending on the parameters of the prior abrasive blasting. Mechanik 2015, 266–269. [Google Scholar] [CrossRef] [Green Version]
- Śmielak, B.; Klimek, L.; Wojciechowski, R.; Bąkała, M. Effect of zirconia surface treatment on its wettability by liquid ceramics. J. Prosthet. Dent. 2019, 122, 410.e1–410.e6. [Google Scholar] [CrossRef]
- Gołębiowski, M.; Wołowiec, E.; Klimek, L. Airborne-particle abrasion parameters on the quality of titanium-ceramic bonds. J. Prosthet. Dent. 2015, 113, 453–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marefati, M.T.; Hadian, A.M.; Hooshmand, T.; Hadian, A.; Yekta, B.E. Wetting Characteristics of a Nano Y-TZP Dental Ceramic by a Molten Feldspathic Veneer. Procedia Mater. Sci. 2015, 11, 157–161. [Google Scholar] [CrossRef]
- Marefati, M.T.; Hadian, A.M.; Hooshmand, T.; Yekta, B.E.; Koohkan, R. Wettability of zirconia by feldspathic veneer in dental restorations: Effect of firing atmosphere and surface roughness. Ceram. Int. 2018, 44, 4307–4312. [Google Scholar] [CrossRef]
- Śmielak, B.; Klimek, L. Effect of air abrasion on the number of particles embedded in zironia. Materials 2018, 11, 259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietnicki, K.; Wołowiec-Korecka, E.; Klimek, L. Modeling of the number of stubble stuck elements after abrasive jet machining-processing. Arch. Foundry Eng. 2011, 11, 51–54. [Google Scholar]
Ni | Cr | Mo | Fe | Mn | Ta | Si | Co | Nb |
---|---|---|---|---|---|---|---|---|
residue | 24.63 | 9.21 | 1.53 | 0.42 | 0.19 | 1.54 | 0.15 | 0.48 |
Type of Abrasive | Abrasive Particle Size [µm] | Processing Pressure [kPa] | |
---|---|---|---|
400 | 600 | ||
Al2O3 | 50 | A54 | A56 |
110 | A14 | A16 | |
250 | A24 | A26 | |
SiC | 50 | S54 | S65 |
110 | S14 | S16 | |
250 | S24 | S26 |
Temp. [°C] | Al2O3 Abrasive Blasting Parameters | ||||||
---|---|---|---|---|---|---|---|
400 kPa | 600 kPa | Total | |||||
50 µm | 110 µm | 250 µm | 50 µm | 110 µm | 250 µm | ||
850 | 86.33 ± 3.51 | 82.93 ± 6.83 | 93.10 ± 2.55 | 97.56 ± 7.66 | 67.07 ± 0.81 | 80.05 ± 3.04 | 84.51 ± 4.07 |
875 | 70.20 ± 3.40 | 74.98 ± 5.63 | 89.98 ± 2.20 | 83.10 ± 6.22 | 65.57 ± 1.33 | 75.90 ± 2.45 | 76.62 ± 3.54 |
900 | 63.80 ± 4.61 | 68.88 ± 1.41 | 82.73 ± 3.11 | 74.38 ± 5.34 | 64.30 ± 1.66 | 69.27 ± 1.90 | 70.56 ± 3.00 |
925 | 60.23 ± 2.83 | 65.60 ± 1.72 | 76.68 ± 1.43 | 68.65 ± 1.17 | 62.40 ± 1.14 | 64.17 ± 4.72 | 66.29 ± 2.17 |
950 | 56.75 ± 3.03 | 63.20 ± 1.92 | 73.43 ± 1.82 | 63.18 ± 2.25 | 60.65 ± 1.42 | 58.93 ± 5.26 | 62.69 ± 2.62 |
975 | 53.58 ± 2.49 | 59.93 ± 0.75 | 71.85 ± 1.43 | 58.70 ± 2.75 | 57.78 ± 1.49 | 56.00 ± 5.91 | 59.64 ± 5.91 |
1000 | 50.63 ± 2.40 | 57.50 ± 0.51 | 70.88 ± 0.83 | 54.55 ± 2.66 | 55.73 ± 1.69 | 54.08 ± 6.14 | 57.23 ± 6.14 |
Total | 63.07± 3.18 | 67.57 ± 2.68 | 79.80 ± 1.91 | 71.45 ± 4.01 | 61.93 ± 1.36 | 65.48 ± 4.20 | - |
ANOVA | Factor | F | P | Partial eta2 | Power | ||
Particle size | 5.462 | <0.01 | 0.3777 | 0.7806 | |||
Pressure × Particle size | 6.332 | <0.01 | 0.4130 | 0.8409 |
Temp. [°C] | SiC Abrasive Blasting Parameters | ||||||
---|---|---|---|---|---|---|---|
400 kPa | 600 kPa | Total | |||||
50 µm | 110 µm | 250 µm | 50 µm | 110 µm | 250 µm | ||
850 | 81.25 ± 2.62 | 74.67 ± 0.86 | 79.23 ± 5.40 | 72.23 ± 0.49 | 65.57 ± 0.86 | 74.68 ± 3.64 | 74.60 ± 2.31 |
875 | 75.30 ± 1.24 | 72.20 ± 2.15 | 72.38 ± 3.98 | 70.35 ± 1.00 | 64.38 ± 0.73 | 69.05 ± 3.06 | 70.61 ± 2.03 |
900 | 71.95 ± 0.60 | 69.58 ± 2.87 | 65.23 ± 3.49 | 69.60 ± 0.61 | 63.15 ± 1.41 | 65.20 ± 1.25 | 67.45 ± 1.70 |
925 | 69.73 ± 0.52 | 67.70 ± 1.04 | 59.85 ± 0.74 | 68.13 ± 1.46 | 61.75 ± 1.50 | 62.55 ± 0.46 | 64.95 ± 0.95 |
950 | 66.55 ± 0.36 | 65.80 ± 1.08 | 53.90 ± 3.01 | 67.18 ± 1.52 | 59.35 ± 0.65 | 59.95 ± 1.48 | 62.12 ± 1.35 |
975 | 65.10 ± 0.78 | 63.35 ± 4.21 | 50.48 ± 2.20 | 66.13 ± 1.73 | 57.40 ± 1.00 | 57.53 ± 1.44 | 60.00 ± 1.89 |
1000 | 63.05 ± 1.01 | 61.80 ± 4.33 | 49.10 ± 4.06 | 64.30 ± 1.63 | 55.87 ± 0.71 | 54.78 ± 1.10 | 58.15 ± 2.14 |
Total | 70.42 ± 1.02 | 67.87 ± 2.36 | 61.45 ± 3.27 | 68.27 ± 1.20 | 61.07 ± 0.98 | 63.39 ± 1.78 | - |
ANOVA | Factor | F | P | Partial eta2 | Power | ||
Particle size | 10.325 | <0.01 | 0.5343 | 0.9694 |
Type of Abrasive | Particle Size [µm] | Treatment Pressure [kPa] | |
---|---|---|---|
400 | 600 | ||
Al2O3 | 50 | <850 | 863 °C |
110 | <850 °C | <850 °C | |
250 | 875 °C | <850 °C | |
SiC | 50 | <850 °C | <850 °C |
110 | <850 °C | <850 °C | |
250 | <850 °C | <850 °C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czepułkowska-Pawlak, W.; Klimek, L.; Makówka, M.; Wołowiec-Korecka, E. Effect of Ni-Cr Alloy Surface Abrasive Blasting on Its Wettability by Liquid Ceramics. Materials 2021, 14, 2007. https://doi.org/10.3390/ma14082007
Czepułkowska-Pawlak W, Klimek L, Makówka M, Wołowiec-Korecka E. Effect of Ni-Cr Alloy Surface Abrasive Blasting on Its Wettability by Liquid Ceramics. Materials. 2021; 14(8):2007. https://doi.org/10.3390/ma14082007
Chicago/Turabian StyleCzepułkowska-Pawlak, Weronika, Leszek Klimek, Marcin Makówka, and Emilia Wołowiec-Korecka. 2021. "Effect of Ni-Cr Alloy Surface Abrasive Blasting on Its Wettability by Liquid Ceramics" Materials 14, no. 8: 2007. https://doi.org/10.3390/ma14082007
APA StyleCzepułkowska-Pawlak, W., Klimek, L., Makówka, M., & Wołowiec-Korecka, E. (2021). Effect of Ni-Cr Alloy Surface Abrasive Blasting on Its Wettability by Liquid Ceramics. Materials, 14(8), 2007. https://doi.org/10.3390/ma14082007