Foaming Performance and FTIR Spectrometric Analysis of Foamed Bituminous Binders Intended for Surface Courses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Experimental Plan
2.2. Methods
2.2.1. Measuring and Evaluating Bitumen Foaming Characteristics (ERm and T1/2)
- Maximum expansion ratio (ERm)—defined as the maximum increase of the bitumen volume due to foaming;
- Half-life (T1/2)—defined as the amount of time passed between the measurement of maximum expansion ratio and the halving of the bitumen foam volume.
2.2.2. Simultaneous Optimization of Foaming Performance
2.2.3. Spectrometric Analysis
3. Results and Discussion
3.1. Evaluation of Bitumen Foaming Performance
3.2. Effects of Foaming on the Chemical Composition of the Binders
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iwanski, M.M.; Chomicz-Kowalska, A.; Maciejewski, K. Resistance to moisture-induced damage of half-warm-mix asphalt concrete with foamed bitumen. Materials 2020, 13. [Google Scholar] [CrossRef] [Green Version]
- Chomicz-Kowalska, A.; Maciejewski, K.; Iwański, M.M.; Janus, K. Effects of zeolites and hydrated lime on volumetrics and moisture resistance of foamed warm mix asphalt concrete. Bull. Pol. Acad. Sci. Tech. Sci. 2021. [Google Scholar] [CrossRef]
- Pucułek, M.; Liphardt, A.; Radziszewski, P. Evaluation of the possibility of reduction of highly modified binders technological temperatures. Arch. Civ. Eng. 2020. [Google Scholar] [CrossRef]
- Czapik, P.; Zapała-Sławeta, J.; Owsiak, Z.; Stępień, P. Hydration of cement by-pass dust. Constr. Build. Mater. 2020, 231, 117139. [Google Scholar] [CrossRef]
- Remišová, E.; Decký, M.; Mikolaš, M.; Hájek, M.; Kovalčík, L.; Mečár, M. Design of Road Pavement Using Recycled Aggregate. IOP Conf. Ser. Earth Environ. Sci. 2016, 44, 022016. [Google Scholar] [CrossRef] [Green Version]
- Bańkowski, W.; Król, J.; Gałązka, K.; Liphardt, A.; Horodecka, R. Design and verification of bituminous mixtures with the increased content of reclaimed asphalt pavement. IOP Conf. Ser. Mater. Sci. Eng. 2018, 356. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, K.J. Mix Design Considerations for Cold and Half-Warm Bituminous Mixes with Emphasis on Foamed Bitumen. Ph.D. Thesis, University of Stellenbosch, Stellenbosch, South Africa, 2000. [Google Scholar]
- Woszuk, A.; Franus, W. A review of the application of zeolite materials in warm mix asphalt technologies. Appl. Sci. 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Yin, F.; Arambula, E.; Bhasin, A. Workability and coatability of foamed Warm-Mix Asphalt. Asph. Pavements 2014, 745–754. [Google Scholar] [CrossRef]
- Capitão, S.D.; Picado-Santos, L.G.; Martinho, F. Pavement engineering materials: Review on the use of warm-mix asphalt. Constr. Build. Mater. 2012, 36, 1016–1024. [Google Scholar] [CrossRef]
- Iwański, M.M.; Chomicz-Kowalska, A.; Maciejewski, K. Effect of Surface Active Agent (SAA) on 50/70 Bitumen Foaming Characteristics. Materials 2019, 12, 3514. [Google Scholar] [CrossRef] [Green Version]
- Iwanski, M.; Chomicz-Kowalska, A. Moisture and Frost Resistance of the Recycled Base Rehabilitated with the Foamed Bitumen Technology. Arch. Civ. Eng. 2012, 58, 185–198. [Google Scholar] [CrossRef]
- Chomicz-Kowalska, A.; Maciejewski, K. Performance and viscoelastic assessment of high-recycle rate cold foamed bitumen mixtures produced with different penetration binders for rehabilitation of deteriorated pavements. J. Clean. Prod. 2020, 258, 120517. [Google Scholar] [CrossRef]
- Iwański, M.; Buczyński, P.; Mazurek, G. The use of gabbro dust in the cold recycling of asphalt paving mixes with foamed bitumen. Bull. Pol. Acad. Sci. Tech. Sci. 2016, 64, 763–773. [Google Scholar] [CrossRef]
- Iwański, M.; Chomicz-Kowalska, A. Application of the foamed bitumen and bitumen emulsion to the road base mixes in the deep cold recycling technology. Balt. J. Road Bridg. Eng. 2016, 11, 291–301. [Google Scholar] [CrossRef]
- Chomicz-Kowalska, A.; Stepien, J. Cost and Eco-Effective Cold In-Place Recycled Mixtures with Foamed Bitumen during the Reconstruction of a Road Section under Variable Load Bearing Capacity of the Subgrade. Proc. Eng. 2016, 161, 980–989. [Google Scholar] [CrossRef] [Green Version]
- Yin, F.; Arambula, E.; Newcomb, D.E. Effect of water content on binder foaming characteristics and foamed mixture properties. Transp. Res. Rec. 2015, 2506, 1–7. [Google Scholar] [CrossRef]
- Abreu, L.P.F.; Oliveira, J.R.M.; Silva, H.M.R.D.; Palha, D.; Fonseca, P.V. Suitability of different foamed bitumens for warm mix asphalts with increasing recycling rates. Constr. Build. Mater. 2017, 142, 342–353. [Google Scholar] [CrossRef]
- Abreu, L.; Oliveira, J.; Silva, H.; Silva, C.; Palha, D.; Fonseca, P. Foamed bitumen: An alternative way of producing asphalt mixtures. Ciência Tecnol. Mater. 2017, 29, e198–e203. [Google Scholar] [CrossRef]
- Sánchez, D.B.; Airey, G.; Caro, S.; Grenfell, J. Effect of foaming technique and mixing temperature on the rheological characteristics of fine RAP-foamed bitumen mixtures. Road Mater. Pavement Des. 2020, 21, 2143–2159. [Google Scholar] [CrossRef]
- Maciejewski, K. Wpływ Rodzaju Dodatku i Starzenia Krótkoterminowego na Właściwości Wysokotemperaturowe Asfaltów Drogowych Przeznaczonych do Mieszanek Mineralno-Asfaltowych Wytwarzanych w Technologii „Na Ciepło” z Asfaltem Spienionym Wodą. Ph.D. Thesis, Kielce University of Technology, Kielce, Poland, 2019. [Google Scholar]
- Remišová, E.; Zatkaliková, V.; Schlosser, F. Study of Rheological Properties of Bituminous Binders in Middle and High Temperatures. Civ. Environ. Eng. 2016, 12, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Remišová, E.; Zatkalíková, V. Evaluation of Bituminous Binder in Relation to Resistance to Permanent Deformation. Proc. Eng. 2016, 153, 584–589. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, K.J.; Molenaar, A.A.A.; De Groot, J.L.A.; Van de Ven, M.F.C.; Newcomb, D.; Abadie, C.; Dunning, M.; Lenters, J.; Christensen, D.; Winford, J.; et al. Foamed asphalt produced using warmed aggregates. J. Asph. Paving Technol. Tech. Sess. 2002, 71, 444–478. [Google Scholar]
- Bairgi, B.K.; Tarefder, R.A. Characterization of foaming attributes to binder tribology and rheology to better understand the mechanistic behavior of foamed asphalt. Int. J. Pavement Res. Technol. 2021, 14, 13–22. [Google Scholar] [CrossRef]
- Bairgi, B.K.; Mannan, U.A.; Tarefder, R.A. Tribological Evaluation for an In-Depth Understanding of Improved Workability of Foamed Asphalt. Transp. Res. Rec. J. Transp. Res. Board 2019, 2673, 533–545. [Google Scholar] [CrossRef]
- Newcomb, D.E.; Arambula, E.; Yin, F.; Zhang, J.; Bhasin, A.; Li, W.; Zelalem, A. Properties of Foamed Asphalt for Warm Mix Asphalt Applications; NCHRP Report 807; The National Academies Press: Washington, DC, USA, 2015. [Google Scholar]
- Bairgi, B.K.; Tarefder, R.A. Effect of foaming water contents on high-temperature rheological characteristics of foamed asphalt binder. In Proceedings of the International Conference on Transportation and Development, Pittsburgh, PA, USA, 15–18 July 2018; American Society of Civil Engineers: Reston, VA, USA, 2018; pp. 243–251. [Google Scholar]
- Bairgi, B.K.; Mannan, U.A.; Tarefder, R.A. Influence of foaming on tribological and rheological characteristics of foamed asphalt. Constr. Build. Mater. 2019, 205, 186–195. [Google Scholar] [CrossRef]
- Sunarjono, S. The Influence of Foamed Bitumen Characteristics on Cold-Mix Asphalt Properties. Ph.D. Thesis, Nottingham School of Civil Engineering, Transportation Engineering Centre, The University of Nottingham, Nottingham, UK, 2008. [Google Scholar]
- Huang, B.; Zhang, Y.; Shu, X.; Liu, Y.; Penumadu, D.; Ye, X.P. Neutron Scattering for Moisture Detection in Foamed Asphalt. J. Mater. Civ. Eng. 2013, 25, 932–938. [Google Scholar] [CrossRef]
- Martinez-Arguelles, G.; Giustozzi, F.; Crispino, M.; Flintsch, G.W. Investigating physical and rheological properties of foamed bitumen. Constr. Build. Mater. 2014, 72, 423–433. [Google Scholar] [CrossRef]
- Iwański, M.; Mazurek, G.; Buczyński, P. Bitumen foaming optimisation process on the basis of rheological properties. Materials 2018, 11, 1854. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Y.; Luo, Y. Impacts of water content on rheological properties and performance-related behaviors of foamed warm-mix asphalt. Constr. Build. Mater. 2013, 48, 203–209. [Google Scholar] [CrossRef]
- Iwański, M.; Mazurek, G.; Buczyński, P.; Zapała-Sławeta, J. Multidimensional analysis of foaming process impact on 50/70 bitumen ageing. Constr. Build. Mater. 2021, 266, 121231. [Google Scholar] [CrossRef]
- Hung, A.M.; Goodwin, A.; Fini, E.H. Effects of water exposure on bitumen surface microstructure. Constr. Build. Mater. 2017, 135, 682–688. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.-C.; Turner, F. Impact of water on aging. In Fundamental Properties of Asphalts and Modified Asphalts; Western Research Institute, FHWA: Laramie, WY, USA, 2015. [Google Scholar]
- West, R.; Rodezno, C.; Julian, G.; Prowell, B.; Frank, B.; Osborn, L.V.; Kriech, T. Field Performance of Warm Mix Asphalt Technologies; NCHRP Report 779; The National Academies Press: Washington, DC, USA, 2014. [Google Scholar]
- Błażejowski, K.; Wójcik-Wiśniewska, M.; Baranowska, W. Orlen Asfalt Bitumen Handbook; ORLEN Asfalt sp. z o.o.: Płock, Poland, 2018. [Google Scholar]
- Bonaquist, R. Mix Design Practices for Warm Mix Asphalt; NCHRP Report 691; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Chomicz-Kowalska, A. Laboratory testing of low temperature asphalt concrete produced in foamed bitumen technology with fiber reinforcement. Bull. Pol. Acad. Sci. Tech. Sci. 2017, 65. [Google Scholar] [CrossRef] [Green Version]
- Chomicz-Kowalska, A.; Mrugała, J.; Maciejewski, K. Evaluation of foaming performance of bitumen modified with the addition of surface active agent. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 032086. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 5th ed.; Wiley: Hoboken, NY, USA, 2001. [Google Scholar]
- Derringer, G.; Suich, R. Simultaneous Optimization of Several Response Variables. J. Qual. Technol. 1980, 12, 214–219. [Google Scholar] [CrossRef]
- D’Angelo, G.; Lo Presti, D.; Thom, N. Optimisation of bitumen emulsion properties for ballast stabilisation. Mater. Constr. 2017, 67. [Google Scholar] [CrossRef] [Green Version]
- Statsoft Elektroniczny Podręcznik Statystyki (Data Science Textbook). Available online: https://www.statsoft.pl/textbook/stathome.html (accessed on 9 February 2021).
- Chomicz-Kowalska, A.; Maciejewski, K. Multivariate Optimization of Recycled Road Base Cold Mixtures with Foamed Bitumen. Proc. Eng. 2015, 108, 436–444. [Google Scholar] [CrossRef] [Green Version]
- Asphalt Academy. Technical Guideline: Bitumen Stabilised Materials. A Guideline for the Design and Construction of Bitumen Emulsion and Foamed Bitumen Stabilised Materials, 2nd ed.; Asphalt Academy: Thatcher, AZ, USA, 2009; Volume 2. [Google Scholar]
- Asphalt Academy. Interim Technical Guidelines (TG2): The Design and Use of Foamed Bitumen Treated Materials; Asphalt Academy: Thatcher, AZ, USA, 2002. [Google Scholar]
- Muthen, K.M. Foamed asphalt mixes-mix design procedure. Report No. CR-98. Transp. Res. Rec. 1998, 898, 290–296. [Google Scholar]
- Lee, H.D.; Kim, Y. Development of a Mix Design Process for Cold-in-Place Rehabilitation Using Foamed Asphalt; National Transportation Library: New Jersey, NJ, USA, 2003. [Google Scholar]
- Schrader, B. Infrared and Raman Spectroscopy: Methods and Applications; VCH: Vancouver, BC, Canada, 1995; Volume 380, ISBN 3-527-26446-9. [Google Scholar]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J. Spectrometric Identification of Organic Compounds; John Wiley & Sons: New York, NY, USA, 2005; ISBN 978-0-470-61637-6. [Google Scholar]
- Petersen, J.C. A Review of the Fundamentals of Asphalt Oxidation: Chemical, Physicochemical, Physical Property, and Durability Relationships. Transp. Res. Circ. 2009. [Google Scholar] [CrossRef]
- Curtis, C.W.; Hanson, D.I.; Chen, S.T.; Shieh, G.J.; Ling, M. Quantitative determination of polymers in asphalt cements and hot-mix asphalt mixes. Transp. Res. Rec. 1995, 52–61. [Google Scholar]
- Lamontagne, J. Comparison by Fourier transform infrared (FTIR) spectroscopy of different ageing techniques: Application to road bitumens. Fuel 2001, 80, 483–488. [Google Scholar] [CrossRef]
- Masson, J.F.; Pelletier, L.; Collins, P. Rapid FTIR method for quantification of styrene-butadiene type copolymers in bitumen. J. Appl. Polym. Sci. 2001, 79, 1034–1041. [Google Scholar] [CrossRef]
- Nasrazadani, S.; Mielke, D.; Springfield, T.; Ramasamy, N. Practical Applications of FTIR to Characterize Paving Materials; Technical Report 0-5608-1; Texas Department of Transportation: Austin, TX, USA, 2010. [Google Scholar]
- Fernández-Berridi, M.J.; González, N.; Mugica, A.; Bernicot, C. Pyrolysis-FTIR and TGA techniques as tools in the characterization of blends of natural rubber and SBR. Thermochim. Acta 2006, 444, 65–70. [Google Scholar] [CrossRef]
- Yut, I.; Zofka, A. Correlation between rheology and chemical composition of aged polymer-modified asphalts. Constr. Build. Mater. 2014, 62, 109–117. [Google Scholar] [CrossRef]
- Yao, H.; Dai, Q.; You, Z. Fourier Transform Infrared Spectroscopy characterization of aging-related properties of original and nano-modified asphalt binders. Constr. Build. Mater. 2015, 101, 1078–1087. [Google Scholar] [CrossRef]
- Porot, L.; Jellema, E.; Bell, D. Long lasting asphalt materials with highly modified asphaltic binder. In Proceedings of the 9th International Conference on Maintenance and Rehabilitation of Pavements—MairepavLecture Notes in Civil Engineering; Springer: New York, NY, USA, 2020; pp. 517–527. [Google Scholar]
- Zofka, A.; Maliszewska, D.; Maliszewski, M.; Boratyński, J. Application of FTIR ATR method to examine the polymer content in the modified bitumen and to assess susceptibility of bitumen to ageing. Roads Bridg. Drogy Mosty 2015, 14, 163–174. [Google Scholar] [CrossRef]
- Mouillet, V.; Lamontagne, J.; Durrieu, F.; Planche, J.-P.; Lapalu, L. Infrared microscopy investigation of oxidation and phase evolution in bitumen modified with polymers. Fuel 2008, 87, 1270–1280. [Google Scholar] [CrossRef]
Binder Type | PGM 50/70 | PMB 45/80-55 | HMB 45/80-80 | |
---|---|---|---|---|
Penetration, EN 1426, (0.1 mm) | 55 | 60 | 62 | |
Softening point, EN 1427, (°C) | 48.8 | 58.3 | 95.1 | |
Dynamic viscosity, EN 13302, (Pa·s) | 135 °C 155 °C 185 °C | 0.48 0.22 - | 1.14 0.39 - | 2.91 0.65 0.19 |
Performance grade, AASHTO M 332 | 64–22 | 70–22 | 76–28 | |
MSCR at 60 °C, EN 16659 (after RTFOT) | Jnr 3.2 kPa (kPa−1) R3.2 kPa (%) | 1.47 - | 0.31 58 | 0.03 95 |
Binder Type | PGM 50/70 | PMB 45/80-55 | HMB 45/80-80 |
---|---|---|---|
Min. pumping temp. | 130 °C | 150 °C | 160 °C |
Max. short-term storage temp. | 185 °C | 180 °C | 180 °C |
Structural Index | Bond | Characteristic Peak WaveNumber (cm−1) | Chemical Index Expression: |
---|---|---|---|
Sulfoxide | S=O, stretching | 1030 | |
Carbonyl | C=O, stretching | 1700 | |
Polybutadiene | C–H, oop bending of trans-alkene | 966 | |
Polystyrene | C–H, oop bending in monoakrylated aromatic | 699 | |
Vinyl | =C–H oop bending in vinyl groups | 990, 910 | |
ΣAall = A(2953, 2923, 2862) +A1700 + A1600 + A1460 + A1376 + A1310+ A1030 + A990 + A966 +A910 + A864 + A814 + A743 + A724 + A699 oop—out of plane |
Binder Type | PGB 50/70 | PMB 45/80-55 | HMB 45/80-80 | |||
---|---|---|---|---|---|---|
Factor | p-Value (ERm) | p-Value (T1/2) | p-Value (ERm) | p-Value (T1/2) | p-Value (ERm) | p-Value (T1/2) |
(1) Temperature (L) | <0.001 | <0.001 | 0.005 | <0.001 | <0.001 | <0.001 |
Temperature (Q) | 0.194 | 0.058 | <0.001 | <0.001 | 0.428 | <0.001 |
(2) FWC (L) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
FWC (Q) | 0.005 | <0.001 | 0.001 | <0.001 | <0.001 | <0.001 |
1L by 2L | 0.038 | <0.001 | 0.698 | 0.736 | <0.001 | 0.750 |
Lack of fit | 0.089 | 0.011 | <0.001 | <0.001 | 0.001 | 0.006 |
R2adj | 0.924 | 0.949 | 0.763 | 0.768 | 0.951 | 0.966 |
Effect | IC=C | IS=O | ||
---|---|---|---|---|
F | p | F | p | |
Intercept | 760.07 | <0.001 | 23849.35 | <0.001 |
Bitumen | 39.82 | <0.001 | 2.12 | 0.163 |
Foaming | 1.25 | 0.285 | 20.30 | <0.001 |
Bitumen · Foaming | 0.35 | 0.707 | 9.99 | 0.003 |
Effect | IPB | IPS | IVi | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
Intercept | 81098.17 | <0.001 | 91796.18 | <0.001 | 81660.32 | <0.001 |
Bitumen | 124.16 | <0.001 | 11996.03 | <0.001 | 63870.71 | <0.001 |
Foaming | 1.20 | 0.304 | 1.43 | 0.265 | 0.31 | 0.595 |
Bitumen · Foaming | 7.85 | 0.023 | 4.53 | 0.065 | 0.15 | 0.709 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciejewski, K.; Chomicz-Kowalska, A. Foaming Performance and FTIR Spectrometric Analysis of Foamed Bituminous Binders Intended for Surface Courses. Materials 2021, 14, 2055. https://doi.org/10.3390/ma14082055
Maciejewski K, Chomicz-Kowalska A. Foaming Performance and FTIR Spectrometric Analysis of Foamed Bituminous Binders Intended for Surface Courses. Materials. 2021; 14(8):2055. https://doi.org/10.3390/ma14082055
Chicago/Turabian StyleMaciejewski, Krzysztof, and Anna Chomicz-Kowalska. 2021. "Foaming Performance and FTIR Spectrometric Analysis of Foamed Bituminous Binders Intended for Surface Courses" Materials 14, no. 8: 2055. https://doi.org/10.3390/ma14082055
APA StyleMaciejewski, K., & Chomicz-Kowalska, A. (2021). Foaming Performance and FTIR Spectrometric Analysis of Foamed Bituminous Binders Intended for Surface Courses. Materials, 14(8), 2055. https://doi.org/10.3390/ma14082055