Laser Powder Bed Fusion of Ti-6Al-2Sn-4Zr-6Mo Alloy and Properties Prediction Using Deep Learning Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Fabrication
2.2. Microstructural and Mechanical Characterisation
2.3. Deep Learning
3. Results and Discussion
3.1. Optimisation of Deep Learning (DL) Models
3.2. Validation
3.3. Microstructural Analysis
3.4. Hardness
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
AM | Additive manufacturing |
learning rate | |
As | Input neurons |
momentum factor | |
b | powder layer thickness |
DL | deep learning |
DOE | design of experiments |
DLNNs | deep learning neural networks |
E | volumetric energy density |
h | hatching spacing |
k | number of iteration of the weights vector |
LPBF | Laser powder bed fusion |
OM | optical microscope |
output vector of the X-layered | |
P | laser power |
L | The least-square cost function |
ReLU | Rectified Linear Unit |
SNN | Shallow neural network |
s | laser speed |
SEM | electron scanning microscopy |
W | vector |
the function input | |
ZX | output neurons number |
References
- Ge, W.; Lin, F.; Guo, C. Effect of energy input on microstructure and mechanical properties in EBSM Ti6Al4V. Mater. Manuf. Process. 2018, 33, 1708–1713. [Google Scholar] [CrossRef]
- Davidson, K.; Singamneni, S. Selective Laser Melting of Duplex Stainless Steel Powders: An Investigation. Mater. Manuf. Process. 2016, 31, 1543–1555. [Google Scholar] [CrossRef]
- Scherillo, F.; Astarita, A.; Carrino, L.; Pirozzi, C.; Prisco, U.; Squillace, A. Linear friction welding of Ti-6Al-4V parts produced by electron beam melting. Mater. Manuf. Process. 2019, 34, 201–207. [Google Scholar] [CrossRef]
- Kayacan, M.Y.; Özsoy, K.; Duman, B.; Yilmaz, N.; Kayacan, M.C. A study on elimination of failures resulting from layering and internal stresses in Powder Bed Fusion (PBF) additive manufacturing. Mater. Manuf. Process. 2019, 34, 1467–1475. [Google Scholar] [CrossRef]
- Hassanin, H.; Modica, F.; El-Sayed, M.A.; Liu, J.; Essa, K. Manufacturing of Ti–6Al–4V Micro-Implantable Parts Using Hybrid Selective Laser Melting and Micro-Electrical Discharge Machining. Adv. Eng. Mater. 2016, 18, 1544–1549. [Google Scholar] [CrossRef] [Green Version]
- Langford, T.; Mohammed, A.; Essa, K.; Elshaer, A.; Hassanin, H. 4D Printing of Origami Structures for Minimally Invasive Surgeries Using Functional Scaffold. Appl. Sci. 2021, 11, 332. [Google Scholar] [CrossRef]
- Brambilla, C.R.M.; Okafor-Muo, O.L.; Hassanin, H.; ElShaer, A. 3DP Printing of Oral Solid Formulations: A Systematic Review. Pharmaceutics 2021, 13, 358. [Google Scholar] [CrossRef] [PubMed]
- Okafor-Muo, O.L.; Hassanin, H.; Kayyali, R.; ElShaer, A. 3D Printing of Solid Oral Dosage Forms: Numerous Challenges With Unique Opportunities. J. Pharm. Sci. 2020, 109, 3535–3550. [Google Scholar] [CrossRef] [PubMed]
- Hassanin, H.; Alkendi, Y.; Elsayed, M.; Essa, K.; Zweiri, Y. Controlling the Properties of Additively Manufactured Cellular Structures Using Machine Learning Approaches. Adv. Eng. Mater. 2020, 22, 1901338. [Google Scholar] [CrossRef]
- Klippstein, H.; Hassanin, H.; Diaz De Cerio Sanchez, A.; Zweiri, Y.; Seneviratne, L. Additive Manufacturing of Porous Structures for Unmanned Aerial Vehicles Applications. Adv. Eng. Mater. 2018, 20, 1800290. [Google Scholar] [CrossRef]
- Galatas, A.; Hassanin, H.; Zweiri, Y.; Seneviratne, L. Additive Manufactured Sandwich Composite/ABS Parts for Unmanned Aerial Vehicle Applications. Polymers 2018, 10, 1262. [Google Scholar] [CrossRef] [Green Version]
- Hassanin, H.; Abena, A.; Elsayed, M.A.; Essa, K. 4D Printing of NiTi Auxetic Structure with Improved Ballistic Performance. Micromachines 2020, 11, 745. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, M.; Mehta, R.M.; Kim, I.Y. Additive manufacturing infill optimization for automotive 3D-printed ABS components. Rapid Prototyp. J. 2020, 26, 89–99. [Google Scholar] [CrossRef]
- Mohammed, A.; Elshaer, A.; Sareh, P.; Elsayed, M.; Hassanin, H. Additive Manufacturing Technologies for Drug Delivery Applications. Int. J. Pharm. 2020, 580, 119245. [Google Scholar] [CrossRef] [PubMed]
- Hassanin, H.; Jiang, K. Optimized process for the fabrication of zirconia micro parts. Microelectron. Eng. 2010, 87, 1617–1619. [Google Scholar] [CrossRef]
- Essa, K.; Hassanin, H.; Attallah, M.M.; Adkins, N.J.; Musker, A.J.; Roberts, G.T.; Tenev, N.; Smith, M. Development and testing of an additively manufactured monolithic catalyst bed for HTP thruster applications. Appl. Catal. A: Gen. 2017, 542, 125–135. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, M.A.; Hassanin, H.; Essa, K. Effect of casting practice on the reliability of Al cast alloys. Int. J. Cast Met. Res. 2016, 29, 350–354. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, A.; Bidare, P.; Hassanin, H.; Tarlochan, F.; Dimov, S.; Essa, K. Powder-based laser hybrid additive manufacturing of metals: A review. Int. J. Adv. Manuf. Technol. 2021. [Google Scholar] [CrossRef]
- Essa, K.; Khan, R.; Hassanin, H.; Attallah, M.M.; Reed, R. An iterative approach of hot isostatic pressing tooling design for net-shape IN718 superalloy parts. Int. J. Adv. Manuf. Technol. 2016, 83, 1835–1845. [Google Scholar] [CrossRef] [Green Version]
- Sabouri, A.; Yetisen, A.K.; Sadigzade, R.; Hassanin, H.; Essa, K.; Butt, H. Three-Dimensional Microstructured Lattices for Oil Sensing. Energy Fuels 2017, 31, 2524–2529. [Google Scholar] [CrossRef] [Green Version]
- Olson, G.B. Computational Design of Hierarchically Structured Materials. Science 1997, 277, 1237–1242. [Google Scholar] [CrossRef]
- Belhocine, A.; Afzal, A. Computational finite element analysis of brake disc rotors employing different materials. Aust. J. Mech. Eng. 2020, 1–14. [Google Scholar] [CrossRef]
- Yuan, B.; Guss, G.M.; Wilson, A.C.; Hau-Riege, S.P.; DePond, P.J.; McMains, S.; Matthews, M.J.; Giera, B. Machine-Learning-Based Monitoring of Laser Powder Bed Fusion. Adv. Mater. Technol. 2018, 3, 1800136. [Google Scholar] [CrossRef]
- Weichert, D.; Link, P.; Stoll, A.; Rüping, S.; Ihlenfeldt, S.; Wrobel, S. A review of machine learning for the optimization of production processes. Int. J. Adv. Manuf. Technol. 2019. [Google Scholar] [CrossRef]
- Yang, J.; Li, S.; Wang, Z.; Dong, H.; Wang, J.; Tang, S. Using deep learning to detect defects in manufacturing: A comprehensive survey and current challenges. Materials 2020, 13, 5755. [Google Scholar] [CrossRef] [PubMed]
- Bengio, Y.; Lamblin, P.; Popovici, D.; Larochelle, H. Greedy layer-wise training of deep networks. In Proceedings of the 19th International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 4–7 December 2006; pp. 153–160. [Google Scholar]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [Green Version]
- Hinton, G.E.; Osindero, S.; Teh, Y.-W. A Fast Learning Algorithm for Deep Belief Nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef] [PubMed]
- Azzam, R.; Taha, T.; Huang, S.; Zweiri, Y. A deep learning framework for robust semantic SLAM. In Proceedings of the 2020 Advances in Science and Engineering Technology International Conferences, Dubai, United Arab Emirates, 4 February–9 April 2020. [Google Scholar]
- Peters, M.; Kumpfert, J.; Ward, C.H.; Leyens, C. Titanium Alloys for Aerospace Applications. Adv. Eng. Mater. 2003, 5, 419–427. [Google Scholar] [CrossRef]
- Alluaibi, M.H.I.; Cojocaru, E.M.; Rusea, A.; Șerban, N.; Coman, G.; Cojocaru, V.D. Microstructure and mechanical properties evolution during solution and ageing treatment for a hot deformed, above β-transus, ti-6246 alloy. Metals 2020, 10, 1114. [Google Scholar] [CrossRef]
- Kapoor, K.; Ravi, P.; Naragani, D.; Park, J.-S.; Almer, J.D.; Sangid, M.D. Strain rate sensitivity, microstructure variations, and stress-assisted β → α′′ phase transformation investigation on the mechanical behavior of dual-phase titanium alloys. Mater. Charact. 2020, 166, 110410. [Google Scholar] [CrossRef]
- Thijs, L.; Verhaeghe, F.; Craeghs, T.; Humbeeck, J.V.; Kruth, J.P. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Mater. 2010, 58, 3303–3312. [Google Scholar] [CrossRef]
- Vandenbroucke, B.; Kruth, J.P. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp. J. 2007, 13, 196–203. [Google Scholar] [CrossRef]
- Edwards, P.; Ramulu, M. Fatigue performance evaluation of selective laser melted Ti-6Al-4V. Mater. Sci. Eng. A 2014, 598, 327–337. [Google Scholar] [CrossRef]
- Dinh, T.D.; Han, S.; Yaghoubi, V.; Xiang, H.; Erdelyi, H.; Craeghs, T.; Segers, J.; Van Paepegem, W. Modeling detrimental effects of high surface roughness on the fatigue behavior of additively manufactured Ti-6Al-4V alloys. Int. J. Fatigue 2021, 144, 106034. [Google Scholar] [CrossRef]
- Bai, H.; Deng, H.; Chen, L.; Liu, X.; Qin, X.; Zhang, D.; Liu, T.; Cui, X. Effect of heat treatment on the microstructure and mechanical properties of selective laser-melted Ti64 and Ti-5Al-5Mo-5v-1Cr-1Fe. Metals 2021, 11, 53. [Google Scholar] [CrossRef]
- Kim, Y.K.; Park, S.H.; Kim, Y.J.; Almangour, B.; Lee, K.A. Effect of Stress Relieving Heat Treatment on the Microstructure and High-Temperature Compressive Deformation Behavior of Ti-6Al-4V Alloy Manufactured by Selective Laser Melting. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2018, 49, 5763–5774. [Google Scholar] [CrossRef]
- Sercombe, T.; Jones, N.; Day, R.; Kop, A. Heat treatment of Ti-6Al-7Nb components produced by selective laser melting. Rapid Prototyp. J. 2008, 14, 300–304. [Google Scholar] [CrossRef]
- Ganor, Y.I.; Tiferet, E.; Vogel, S.C.; Brown, D.W.; Chonin, M.; Pesach, A.; Hajaj, A.; Garkun, A.; Samuha, S.; Shneck, R.Z.; et al. Tailoring microstructure and mechanical properties of additively-manufactured ti6al4v using post processing. Materials 2021, 14, 658. [Google Scholar] [CrossRef]
- Zhang, L.C.; Miller, J.D.; Sercombe, T.B. Microstructural manipulation and mechanical properties of Ti-24Nb-4Zr-8Sn alloy manufactured by selective laser melting. In Proceedings of the Ti 2011 12th World Conference on Titanium, Beijing, China, 19–24 June 2011; pp. 1740–1743. [Google Scholar]
- Zhou, L.; Yuan, T.; Li, R.; Tang, J.; Wang, M.; Mei, F. Microstructure and mechanical properties of selective laser melted biomaterial Ti-13Nb-13Zr compared to hot-forging. Mater. Sci. Eng. A 2018, 725, 329–340. [Google Scholar] [CrossRef]
- Liu, A.; Chua, C.K.; Leong, K.F. Properties of Test Coupons Fabricated by Selective Laser Melting. Key Eng. Mater. 2010, 447–448, 780–784. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brownlee, J. Machine Learning Algorithms from Scratch: With Python; Machine Learning Mastery: San Juan, PR, USA, 2017. [Google Scholar]
- Read, N.; Wang, W.; Essa, K.; Attallah, M.M. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development. Mater. Design 2015, 65, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Elsayed, M.; Ghazy, M.; Youssef, Y.; Essa, K. Optimization of SLM process parameters for Ti6Al4V medical implants. Rapid Prototyp. J. 2019, 25, 433–447. [Google Scholar] [CrossRef] [Green Version]
Process Parameter | Units | Levels | ||||
---|---|---|---|---|---|---|
−2 | −1 | 0 | 1 | 2 | ||
Laser power | W | 100 | 125 | 150 | 175 | 200 |
Scan speed | mm/s | 800 | 1050 | 1300 | 1550 | 1800 |
Hatch spacing | (h1) | 0.2 | 0.35 | 0.5 | 0.65 | 0.8 |
Island size | mm | 2.0 | 3.5 | 5.0 | 6.5 | 8.0 |
Samples | Laser Power (W) | Scan Speed (mm/s) | Hatch Spacing (a1) | Island Size (mm) | Porosity % | Vickers Micro Hardness |
---|---|---|---|---|---|---|
1 | 100 | 1300 | 0.5 | 5 | 0.65 ± 0.03 | 330.0 ± 5.5 |
2 | 125 | 1550 | 0.65 | 3.5 | 0.3 ± 0.02 | 343.7 ± 5.1 |
3 | 125 | 1050 | 0.65 | 3.5 | 0.25 ± 0.02 | 341.3 ± 5.4 |
4 | 175 | 1550 | 0.65 | 3.5 | 0.13 ± 0.02 | 359.6 ± 8.6 |
5 | 175 | 1550 | 0.35 | 3.5 | 0.25 ± 0.02 | 372.4 ± 6.5 |
6 | 125 | 1050 | 0.35 | 6.5 | 0.19 ± 0.02 | 390.7 ± 9.8 |
7 | 125 | 1550 | 0.35 | 6.5 | 0.13 ± 0.01 | 368.2 ± 5.7 |
8 | 150 | 1300 | 0.5 | 5 | 0.18 ± 0.02 | 369.4 ± 5.6 |
9 | 175 | 1550 | 0.65 | 6.5 | 0.37 ± 0.02 | 356.8 ± 4.6 |
10 | 150 | 1300 | 0.8 | 5 | 0.11 ± 0.01 | 336.8 ± 5.3 |
11 | 150 | 1300 | 0.5 | 2 | 0.17 ± 0.01 | 349.7 ± 8.2 |
12 | 150 | 1300 | 0.5 | 5 | 0.16 ± 0.01 | 365.9 ± 4.0 |
13 | 175 | 1050 | 0.35 | 6.5 | 0.74 ± 0.03 | 441.7 ± 6.8 |
14 | 175 | 1050 | 0.35 | 3.5 | 1.04 ± 0.04 | 382.4 ± 10.2 |
15 | 125 | 1050 | 0.65 | 6.5 | 0.19 ± 0.01 | 345.6 ± 6.5 |
16 | 125 | 1550 | 0.65 | 6.5 | 0.54 ± 0.03 | 330.4 ± 6.3 |
17 | 175 | 1550 | 0.35 | 6.5 | 0.09 ± 0.01 | 381.8 ± 3.1 |
18 | 175 | 1050 | 0.65 | 6.5 | 0.08 ± 0.01 | 372.0 ± 9.5 |
19 | 125 | 1550 | 0.35 | 3.5 | 0.16 ± 0.01 | 352.6 ± 6.9 |
20 | 175 | 1050 | 0.65 | 3.5 | 0.28 ± 0.02 | 367.6 ± 9.8 |
21 | 200 | 1300 | 0.5 | 5 | 0.19 ± 0.01 | 374.9 ± 6.0 |
22 | 150 | 1300 | 0.5 | 8 | 0.07 ± 0.01 | 357.6 ± 5.9 |
23 | 125 | 1050 | 0.35 | 3.5 | 0.18 ± 0.01 | 367.0 ± 6.7 |
24 | 150 | 1800 | 0.5 | 5 | 0.16 ± 0.01 | 340.2 ± 6.5 |
25 | 150 | 1300 | 0.5 | 5 | 0.15 ± 0.01 | 360.4 ± 8.6 |
26 | 150 | 800 | 0.5 | 5 | 0.4 ± 0.02 | 359.3 ± 8.2 |
Approach | Porosity | Hardness |
---|---|---|
DLNN | 3% | 0.3% |
DNN | 18% | 12% |
SNN | 46% | 36% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassanin, H.; Zweiri, Y.; Finet, L.; Essa, K.; Qiu, C.; Attallah, M. Laser Powder Bed Fusion of Ti-6Al-2Sn-4Zr-6Mo Alloy and Properties Prediction Using Deep Learning Approaches. Materials 2021, 14, 2056. https://doi.org/10.3390/ma14082056
Hassanin H, Zweiri Y, Finet L, Essa K, Qiu C, Attallah M. Laser Powder Bed Fusion of Ti-6Al-2Sn-4Zr-6Mo Alloy and Properties Prediction Using Deep Learning Approaches. Materials. 2021; 14(8):2056. https://doi.org/10.3390/ma14082056
Chicago/Turabian StyleHassanin, Hany, Yahya Zweiri, Laurane Finet, Khamis Essa, Chunlei Qiu, and Moataz Attallah. 2021. "Laser Powder Bed Fusion of Ti-6Al-2Sn-4Zr-6Mo Alloy and Properties Prediction Using Deep Learning Approaches" Materials 14, no. 8: 2056. https://doi.org/10.3390/ma14082056
APA StyleHassanin, H., Zweiri, Y., Finet, L., Essa, K., Qiu, C., & Attallah, M. (2021). Laser Powder Bed Fusion of Ti-6Al-2Sn-4Zr-6Mo Alloy and Properties Prediction Using Deep Learning Approaches. Materials, 14(8), 2056. https://doi.org/10.3390/ma14082056