Improving the Hydrophilicity of Flexible Polyurethane Foams with Sodium Acrylate Polymer
Abstract
:1. Introduction
2. Materials and Methods
2.1. FPU Foams Synthesis
2.2. Apparent Density Tests
2.3. Foam Cell Structure
2.4. Urine Retention Capacity
2.5. Kinetic of Urine Absorption
2.6. Foam Elasticity
2.7. Water Absorption by SEM
2.8. Volume of Foam Samples
3. Results and Discussion
3.1. Determination of the Foam Formulation
3.2. Apparent Density Test
3.3. Saline Solution Retention
3.4. SEM Photography
3.5. Compression Test
3.6. Influence of the Sodium Acrylate Polymer (PNaA) Incorporation
3.7. Influence of the PNaA Content on the Foam Apparent Density
3.8. Saline Solution Absorption Test
3.9. Influence on the Foam Elasticity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- König, A.; Fehrenbacher, U.; Hirth, T.; Kroke, E. Flexible polyurethane foam with the flame-retardant melamine. J. Cell. Plast. 2008, 44, 469–480. [Google Scholar] [CrossRef]
- Hirschler, M.M. Polyurethane foam and fire safety. Polym. Adv. Technol. 2008, 19, 521–529. [Google Scholar] [CrossRef]
- Reed, D. Pu Latin America 2001: August 28th–30th 2001; iSmithers Rapra Publishing: Akron, OH, USA, 2001; ISBN 9781859572924. [Google Scholar]
- Kelly, D.J.; Kim, D.W. Highly Absorbent Polyurethane Foam. US patent 4,985,467, 15 January 1991. [Google Scholar]
- Garvey, C.E. Process of Making a Superabsorbent Polyurethane Foam. EP patent WO2019159033A1, 1988. [Google Scholar]
- Brannon-Peppas, L.; Harland, R.S. Absorbent polymer technology. In Studies in Polymer Science; Elsevier: Amsterdam, The Netherlands, 1990; pp. 3–278. ISBN 978-0-444-88654-5. [Google Scholar]
- Zheng, Y.; Li, P.; Zhang, J.; Wang, A. Study on superabsorbent composite XVI. Synthesis, characterization and swelling behaviors of poly(sodium acrylate)/vermiculite superabsorbent composites. Eur. Polym. J. 2007, 43, 1691–1698. [Google Scholar] [CrossRef]
- Kikuchi, A.; Okano, T. Pulsatile drug release control using hydrogels. Adv. Drug Deliv. Rev. 2002, 54, 53–77. [Google Scholar] [CrossRef]
- Ghorbani, S.; Eyni, H.; Bazaz, S.R.; Nazari, H.; Asl, L.S.; Zaferani, H.; Kiani, V.; Mehrizi, A.A.; Soleimani, M. Hydrogels Based on Cellulose and its Derivatives: Applications, Synthesis, and Characteristics. Polym. Sci. Ser. A 2018, 60, 707–722. [Google Scholar] [CrossRef]
- Bashari, A.; Rouhani Shirvan, A.; Shakeri, M. Cellulose-based hydrogels for personal care products. Polym. Adv. Technol. 2018, 29, 2853–2867. [Google Scholar] [CrossRef]
- Mignon, A.; De Belie, N.; Dubruel, P.; Van Vlierberghe, S. Superabsorbent polymers: A review on the characteristics and applications of synthetic, polysaccharide-based, semi-synthetic and ‘smart’ derivatives. Eur. Polym. J. 2019, 117, 165–178. [Google Scholar] [CrossRef]
- Behera, S.; Mahanwar, P.A. Superabsorbent polymers in agriculture and other applications: A review. Polym. Technol. Mater. 2020, 59, 341–356. [Google Scholar] [CrossRef]
- Wei, J.; Low, Z.X.; Ou, R.; Simon, G.P.; Wang, H. Hydrogel-polyurethane interpenetrating network material as an advanced draw agent for forward osmosis process. Water Res. 2016, 96, 292–298. [Google Scholar] [CrossRef]
- Rosa, F.; Casquilho, M. Effect of synthesis parameters and of temperature of swelling on water absorption by a superabsorbent polymer. Fuel Process. Technol. 2012, 103, 174–177. [Google Scholar] [CrossRef]
- Sinha, V.; Chakma, S. Advances in the preparation of hydrogel for wastewater treatment: A concise review. J. Environ. Chem. Eng. 2019, 7. [Google Scholar] [CrossRef]
- Santiago, F.; Mucientes, A.E.; Osorio, M.; Poblete, F.J. Synthesis and swelling behaviour of poly(sodium acrylate)/sepiolite superabsorbent composites and nanocomposites. Polym. Int. 2006, 55, 843–848. [Google Scholar] [CrossRef]
- Teramoto, N.; Shigehiro, O.; Ogawa, Y.; Maruyama, Y.; Shimasaki, T.; Shibata, M. Polymer foam-reinforced hydrogels inspired by plant body frameworks as high-performance soft matter. Polym. J. 2014, 46, 592–597. [Google Scholar] [CrossRef]
- Ligoure, C.; Cloitre, M.; Le Chatelier, C.; Monti, F.; Leibler, L. Making polyurethane foams from microemulsions. Polymer 2005, 46, 6402–6410. [Google Scholar] [CrossRef]
- Lim, H.; Kim, S.H.; Kim, B.K. Effects of silicon surfactant in rigid polyurethane foams. Express Polym. Lett. 2008, 2, 194–200. [Google Scholar] [CrossRef]
- Campanella, A.; Bonnaillie, L.M.; Wool, R.P. Polyurethane foams from soyoil-based polyols. J. Appl. Polym. Sci. 2009, 112, 2567–2578. [Google Scholar] [CrossRef]
- Lubguban, A.A.; Tu, Y.C.; Lozada, Z.R.; Hsieh, F.H.; Suppes, G.J. Noncatalytic polymerization of ethylene glycol and epoxy molecules for rigid polyurethane foam applications. J. Appl. Polym. Sci. 2009, 112, 2185–2194. [Google Scholar] [CrossRef]
- Borreguero, A.M.; Rodriguez, J.F.; Valverde, J.L.; Arevalo, R.; Peijs, T.; Carmona, M. Characterization of rigid polyurethane foams containing microencapsulated Rubitherm? RT27: Catalyst effect. Part II. J. Mater. Sci. 2011, 46. [Google Scholar] [CrossRef]
- Casati, F.M.; Sonney, J.M.; Mispreuve, H.; Fanget, A.; Herrington, R.; Tu, J. Elimination of amine emissions from polyurethane foams: Challenges and opportunities. In Proceedings of the API 2001, Columbus, OH, USA, 30 September–3 October 2001; pp. 47–60. [Google Scholar]
- Zhang, X.; Macosko, C.; Davis, H.; Nikolov, A.; Wasan, D. Role of Silicone Surfactant in Flexible Polyurethane Foam. J. Colloid Interface Sci. 1999, 215, 270–279. [Google Scholar] [CrossRef]
- Sweigart, M.L.; Diamond, P. Health Hazard. Potential of Hypol Polyurethane Prepolymers. Report No 75M-9; USAF Environmental Health Laboratory McClellan AFB: CA, USA, 1975.
- Lee, S.M.; Park, I.K.; Kim, Y.S.; Kim, H.J.; Moon, H.; Mueller, S.; Jeong, Y.-I.L. Physical, morphological, and wound healing properties of a polyurethane foam-film dressing. Biomater. Res. 2016, 20. [Google Scholar] [CrossRef] [Green Version]
- Brodin, F.W.; Theliander, H. A comparison of softwood and birch kraft pulp fibers as raw materials for production of TEMPO-oxidized pulp, MFC and superabsorbent foam. Cellulose 2013, 20, 2825–2838. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, L.; Hossain, L.; Downey, E.; Scales, C.; Batchelor, W.; Garnier, G. Carboxylated nanocellulose foams as superabsorbents. J. Colloid Interface Sci. 2019, 538, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Capezza, A.J.; Wu, Q.; Newson, W.R.; Olsson, R.T.; Espuche, E.; Johansson, E.; Hedenqvist, M.S. Superabsorbent and Fully Biobased Protein Foams with a Natural Cross-Linker and Cellulose Nanofibers. ACS Omega 2019, 4, 18257–18267. [Google Scholar] [CrossRef] [PubMed]
Foam Name | Catalyst | Surfactant | ||||
---|---|---|---|---|---|---|
Tegoamin BDE | Tegoamin 33 | SnOct2 | SH350 | L-620LV | TEGOSTAB | |
(pph Hypol) | ||||||
1SH | - | - | - | 1.0 | - | - |
1.7SH | - | - | - | 1.7 | - | - |
2LV | - | - | - | - | 2.0 | - |
1TAB | - | - | - | - | - | 1.0 |
0.2BDE | 0.2 | - | - | - | - | - |
0.5BDE | 0.5 | - | - | - | - | - |
0.2BDE-1SH | 0.2 | - | - | 1.0 | - | - |
0.2BDE-1LV | 0.2 | - | - | - | 1.0 | - |
2.3T33 | - | 2.3 | - | - | - | - |
5T33 | - | 5.0 | - | - | - | - |
0.05BDE-0.1T33-0.1OC-1.4LV | 0.05 | 0.1 | 0.1 | - | 1.4 | - |
Foam Name | Apparent Density (kg/m3) |
---|---|
1SH | 66.61 ± 0.83 |
1.7SH | 82.60 ± 0.95 |
0.2BDE | 167.55 ± 1.06 |
0.5BDE | 161.97 ± 1.11 |
0.2BDE-1SH | 81.86 ± 0.48 |
0.2BDE-1LV | 94.40 ± 0.77 |
2.3T33 | 128.59 ± 0.94 |
5T33 | 129.80 ± 0.61 |
0.05BDE-0.1T33-0.1OC-1.4LV | 97.92 ± 0.67 |
Foams | Remaining Deformation (%) |
---|---|
1SH | 0 |
0.2BDE | 44 |
2.3T33 | 46 |
0.05BDE-0.1T33-0.1OC-1.4LV | 20 |
PNaA (pph of Hypol) | Apparent Density (kg/m3) |
---|---|
0.0 | 97.92 ± 0.67 |
2.0 | 97.82 ± 1.21 |
4.0 | 98.42 ± 0.51 |
6.0 | 100.89 ± 0.84 |
8.0 | 94.78 ± 1.50 |
PNaA (pph of Hypol) | Qf (gsaline solution/gfoam) |
---|---|
0 | 14.02 |
2 | 14.89 |
4 | 16.02 |
6 | 17.49 |
8 | 17.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borreguero, A.M.; Zamora, J.; Garrido, I.; Carmona, M.; Rodríguez, J.F. Improving the Hydrophilicity of Flexible Polyurethane Foams with Sodium Acrylate Polymer. Materials 2021, 14, 2197. https://doi.org/10.3390/ma14092197
Borreguero AM, Zamora J, Garrido I, Carmona M, Rodríguez JF. Improving the Hydrophilicity of Flexible Polyurethane Foams with Sodium Acrylate Polymer. Materials. 2021; 14(9):2197. https://doi.org/10.3390/ma14092197
Chicago/Turabian StyleBorreguero, Ana M., Javier Zamora, Ignacio Garrido, Manuel Carmona, and Juan F. Rodríguez. 2021. "Improving the Hydrophilicity of Flexible Polyurethane Foams with Sodium Acrylate Polymer" Materials 14, no. 9: 2197. https://doi.org/10.3390/ma14092197
APA StyleBorreguero, A. M., Zamora, J., Garrido, I., Carmona, M., & Rodríguez, J. F. (2021). Improving the Hydrophilicity of Flexible Polyurethane Foams with Sodium Acrylate Polymer. Materials, 14(9), 2197. https://doi.org/10.3390/ma14092197