The Effect of Cement Addition on Water Vapour Resistance Factor of Rammed Earth
Abstract
:1. Introduction
- —water vapour permeability of air;
- —water vapour permeability of the material;
- —thermodynamic temperature (K);
- —barometric pressure (hPa);
- —standard barometric pressure (1013.25 hPa);
- —gas constant of water vapour (462.10−6 (Nm/(mg·K)).
- —mean specimen thickness (m);
- —water vapour permeance (kg/(m2·s·Pa)).
- G—water vapour flow through the specimen (kg/s);
- A—area of the specimen (m2);
- —water vapour pressure difference across specimen (Pa).
- m1 and m2—mass of test assembly at time t1 and t2, respectively (kg);
- t1 and t2—successive times of weighing (s).
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Vapour Permeability Test
2.2.2. Thermal Conductivity Test
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ciancio, D.; Jaquin, P.; Walker, P. Advances on the Assessment of Soil Suitability for Rammed Earth. Constr. Build. Mater. 2013, 42, 40–47. [Google Scholar] [CrossRef]
- Arrigoni, A.; Beckett, C.T.S.; Ciancio, D.; Pelosato, R.; Dotelli, G.; Grillet, A.C. Rammed Earth Incorporating Recycled Concrete Aggregate: A Sustainable, Resistant and Breathable Construction Solution. Resour. Conserv. Recycl. 2018, 137, 11–20. [Google Scholar] [CrossRef]
- Hall, M.R. The Mechanisms of Moisture Ingress & Migration in Rammed Earth Walls. Ph.D. Thesis, Sheffield Hallam University, Sheffield, UK, 2004. [Google Scholar]
- Nowamooz, H.; Chazallon, C. Finite Element Modelling of a Rammed Earth Wall. Constr. Build. Mater. 2011, 25, 2112–2121. [Google Scholar] [CrossRef]
- Kariyawasam, K.; Jayasinghe, C. Cement Stabilized Rammed Earth as a Sustainable Construction Material. Constr. Build. Mater. 2016, 105, 519–527. [Google Scholar] [CrossRef]
- Fix, S.; Richman, R. Viability of Rammed Earth Building Construction in Cold Climates; Ryerson University: Toronto, ON, Canada, 2009; p. 300. [Google Scholar]
- Gupta, R. Characterizing Material Properties of Cement-Stabilized Rammed Earth to Construct Sustainable Insulated Walls. Case Stud. Constr. Mater. 2014, 1, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Beckett, C.; Ciancio, D. Durability of Cement-Stabilised Rammed Earth: A Case Study in Western Australia. Aust. J. Civ. Eng. 2015. [Google Scholar] [CrossRef] [Green Version]
- Narloch, P.L.; Woyciechowski, P.; Dmowska, E.; Halemba, K. Durability Assessment of Monolithic Rammed Earth Walls. Arch. Civ. Eng. 2015, 61, 73–88. [Google Scholar] [CrossRef] [Green Version]
- Woyciechowski, P.; Narloch, P.L.; Cichocki, D. Shrinkage characteristics of cement stabilized rammed earth. In Proceedings of the MATEC Web of Conferences 2017, RSP 2017—XXVI R-S-P Seminar 2017 Theoretical Foundation of Civil Engineering, Warsaw, Poland, 21–25 August 2017; Volume 117. [Google Scholar] [CrossRef] [Green Version]
- Allinson, D.; Hall, M. Hygrothermal Analysis of a Stabilised Rammed Earth Test Building in the UK. Energy Build. 2010, 42, 845–852. [Google Scholar] [CrossRef]
- Stazi, F.; Nacci, A.; Tittarelli, F.; Pasqualini, E.; Munafò, P. An Experimental Study on Earth Plasters for Earthen Building Protection: The Effects of Different Admixtures and Surface Treatments. J. Cult. Herit. 2016, 17, 27–41. [Google Scholar] [CrossRef]
- Protchenko, K.; Wlodarczyk, M.; Szmigiera, E. Investigation of Behavior of Reinforced Concrete Elements Strengthened with FRP. Procedia Eng. 2015, 111, 679–686. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.R.; Casey, S. Hygrothermal behaviour and occupant comfort in modern earth buildings. In Modern Earth Buildings: Materials, Engineering, Construction and Applications; Woodhead Publishing Limited: Sawston/Cambridge, UK, 2012; pp. 17–40. [Google Scholar]
- Narloch, P.; Protchenko, K.; Cichocki, D. Hydro-Thermal Analysis of Building Envelope Walls with Cement- Stabilized Rammed Earth Structural Layer and Different Thermal Insulators and Their Positioning in Humid Continental Climate Hydro-Thermal Analysis of Building Envelope Walls with Cement-Stabi. IOP Conf. Ser. Mater. Sci. Eng. 2019, 661. [Google Scholar] [CrossRef] [Green Version]
- Firlag, S. Cost-Optimal plus Energy Building in a Cold Climate. Energies 2019, 12, 3841. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.; Allinson, D. Assessing the Effects of Soil Grading on the Moisture Content-Dependent Thermal Conductivity of Stabilised Rammed Earth Materials. Appl. Therm. Eng. 2009, 29, 740–747. [Google Scholar] [CrossRef]
- Protchenko, K.; Szmigiera, E.; Urbanski, M.; Garbacz, A.; Narloch, P.; Lesniak, P. State-of-the-Art on Fire Resistance Aspects of FRP Reinforcing Bars. IOP Conf. Ser. Mater. Sci. Eng. 2019, 661. [Google Scholar] [CrossRef]
- Protchenko, K.; Szmigiera, E. Post-Fire Characteristics of Concrete Beams Reinforced with Hybrid FRP Bars. Materials 2020, 13, 1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wȩglarz, A.; Pierzchalski, M.; Heim, D. Peripheral Isothermal System of Heat Gain Storage for Thermal Stability in Low-Energy Buildings. Appl. Sci. 2019, 9, 3091. [Google Scholar] [CrossRef] [Green Version]
- Bui, Q.B.; Morel, J.C.; Hans, S.; Walker, P. Effect of Moisture Content on the Mechanical Characteristics of Rammed Earth. Constr. Build. Mater. 2014, 54, 163–169. [Google Scholar] [CrossRef]
- Beckett, C.; Ciancio, D. Effect of compaction water content on the strength of cement-stabilized rammed earth materials: EBSCOhost. Can. Geotech. J. 2014, 590, 583–590. [Google Scholar] [CrossRef]
- Anysz, H.; Narloch, P. Designing the Composition of Cement Stabilized Rammed Earth Using Artificial Neural Networks. Materials 2019, 12, 1396. [Google Scholar] [CrossRef] [Green Version]
- Anysz, H.; Brzozowski, Ł.; Kretowicz, W.; Narloch, P. Feature Importance of Stabilised Rammed Earth Components Affecting the Compressive Strength Calculated with Explainable Artificial Intelligence Tools. Materials 2020, 13, 2317. [Google Scholar] [CrossRef]
- Araki, H.; Koseki, J.; Sato, T. Tensile Strength of Compacted Rammed Earth Materials. Soils Found. 2016, 56, 189–204. [Google Scholar] [CrossRef]
- Narloch, P.L.; Lidner, M.; Kunicka, E.; Bielecki, M. Flexural Tensile Strength of Construction Elements Made out of Cement Stabilized Rammed Earth. Procedia Eng. 2015, 111, 589–595. [Google Scholar] [CrossRef]
- Hall, M.R. Assessing the Environmental Performance of Stabilised Rammed Earth Walls Using a Climatic Simulation Chamber. Build. Environ. 2007, 42, 139–145. [Google Scholar] [CrossRef]
- Brás, A.; Antunes, A.; Laborel-Préneron, A.; Ralegaonkar, R.; Shaw, A.; Riley, M.; Faria, P. Optimisation of Bio-Based Building Materials Using Image Analysis Method. Constr. Build. Mater. 2019, 223, 544–553. [Google Scholar] [CrossRef]
- Fantucci, S.; Isaia, F.; Serra, V.; Dutto, M. Insulating Coat to Prevent Mold Growth in Thermal Bridges. Energy Procedia 2017, 134, 414–422. [Google Scholar] [CrossRef]
- Adan, O.C.G.; Samson, R.A. Fundamentals of Mold Growth in Indoor Environments and Strategies for Healthy Living; Wageningen Academic Publishers: Wageningen, The Netherlands, 2011; ISBN 9789086861354. [Google Scholar]
- Cardinale, T.; Rospi, G.; Cardinale, N. The Influence of Indoor Microclimate on Thermal Comfort and Conservation of Artworks: The Case Study of the Cathedral of Matera (South Italy). Energy Procedia 2014, 59, 425–432. [Google Scholar] [CrossRef] [Green Version]
- ISO. Hygrothermal Performance of Building Materials and Products—Determination of Water Vapour Transmission Properties—Cup Method; ISO 12572:2016; ISO: Geneva, Switzerland, 2016. [Google Scholar]
- BSI. Thermal Insulating Products for Building Applications—Determination of Water Vapour Transmission Properties; EN 12086:2013; BSI: London, UK, 2013. [Google Scholar]
- Maillard, P.; Aubert, J.E. Effects of the Anisotropy of Extruded Earth Bricks on Their Hygrothermal Properties. Constr. Build. Mater. 2014, 63, 56–61. [Google Scholar] [CrossRef]
- Buratti, C.; Belloni, E.; Merli, F. Water Vapour Permeability of Innovative Building Materials from Different Waste. Mater. Lett. 2020, 265, 127459. [Google Scholar] [CrossRef]
- Hall, M.; Allinson, D. Analysis of the Hygrothermal Functional Properties of Stabilised Rammed Earth Materials. Build. Environ. 2009, 44, 1935–1942. [Google Scholar] [CrossRef] [Green Version]
- Cagnon, H.; Aubert, J.E.; Coutand, M.; Magniont, C. Hygrothermal Properties of Earth Bricks. Energy Build. 2014, 80, 208–217. [Google Scholar] [CrossRef]
- Bennai, F.; Issaadi, N.; Abahri, K.; Belarbi, R.; Tahakourt, A. Experimental Characterization of Thermal and Hygric Properties of Hemp Concrete with Consideration of the Material Age Evolution. Heat Mass Transf. 2018, 54, 1189–1197. [Google Scholar] [CrossRef]
- Soudani, L. Modelling and Experimental Validation of the Hygrothermal Performances of Earth as a Building Material. Ph.D. Thesis, Université de Lyon, Lyon, France, 2017. [Google Scholar]
- Bruno, A.W.; Perlot, C.; Mendes, J.; Gallipoli, D. A Microstructural Insight into the Hygro-Mechanical Behaviour of a Stabilised Hypercompacted Earth. Mater. Struct. Constr. 2018, 51. [Google Scholar] [CrossRef]
- Piątkiewicz, W.; Narloch, P.; Pietruszka, B. Influence of Hemp-Lime Composite Composition on its Mechanical and Physical Properties. Arch. Civ. Eng. 2020, LXVI, 485–503. [Google Scholar]
- Dondi, M.; Principi, P.; Raimondo, M.; Zanarini, G. Water Vapour Permeability of Clay Bricks. Constr. Build. Mater. 2003, 17, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Khadka, B.; Shakya, M. Comparative Compressive Strength of Stabilized and Un-Stabilized Rammed Earth. Mater. Struct. Constr. 2016, 49, 3945–3955. [Google Scholar] [CrossRef]
- Bahar, R.; Benazzoug, M.; Kenai, S. Performance of Compacted Cement-Stabilised Soil. Cem. Concr. Compos. 2004, 26, 811–820. [Google Scholar] [CrossRef]
- Van Damme, H.; Houben, H. Earth Concrete. Stabilization Revisited. Cem. Concr. Res. 2018, 114, 90–102. [Google Scholar] [CrossRef]
- Saidi, M.; Cherif, A.S.; Zeghmati, B.; Sediki, E. Stabilization Effects on the Thermal Conductivity and Sorption Behavior of Earth Bricks. Constr. Build. Mater. 2018, 167, 566–577. [Google Scholar] [CrossRef]
- Ciancio, D.; Gibbings, J. Experimental Investigation on the Compressive Strength of Cored and Molded Cement-Stabilized Rammed Earth Samples. Constr. Build. Mater. 2012, 28, 294–304. [Google Scholar] [CrossRef]
- Ruggieri, G.; Arrigoni, A.; Pelosato, R.; Meli, P.; Sabbadini, S.; Dotelli, G. Life Cycle Assessment of Natural Building Materials: The Role of Carbonation, Mixture Components and Transport in the Environmental Impacts of Hempcrete Blocks. J. Clean. Prod. 2017, 149, 1051–1061. [Google Scholar] [CrossRef]
- Florentin, Y.; Pearlmutter, D.; Givoni, B.; Gal, E. A Life-Cycle Energy and Carbon Analysis of Hemp-Lime Bio-Composite Building Materials. Energy Build. 2017, 156, 293–305. [Google Scholar] [CrossRef]
- Giuffrida, G.; Caponetto, R.; Nocera, F. Hygrothermal Properties of Raw Earth Materials: A Literature Review. Sustainability 2019, 11, 5342. [Google Scholar] [CrossRef] [Green Version]
- De Brito, J.; Kurda, R.; da Silva, P.R. Can We Truly Predict the Compressive Strength of Concrete without Knowing the Properties of Aggregates? Appl. Sci. 2018, 8, 95. [Google Scholar] [CrossRef] [Green Version]
- Narloch, P.; Woyciechowski, P.; Kotowski, J.; Gawriuczenkow, I.; Emilia, W. The Effect of Soil Mineral Composition on the Compressive Strength of Cement Stabilized Rammed Earth. Materials 2020, 13, 324. [Google Scholar] [CrossRef] [Green Version]
- Narloch, P.L.; Woyciechowski, P.; Jęda, P. The Influence of Loam Type and Cement Content on the Compressive Strength of Rammed Earth. Arch. Civ. Eng. 2015, 61, 73–88. [Google Scholar] [CrossRef] [Green Version]
- Sobczyńska, E.; Terlikowski, W.; Gregoriou-Szczepaniak, M. Article Stability of Treatment from Earth-Based Mortar in Conservation of Stone Structures in Tanais, Russia. Sustainability 2021, 13, 2220. [Google Scholar] [CrossRef]
- BSI. Thermal Performance of Building Materials and Products—Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods—Dry and Moist Products of Medium and Low Thermal Resistance; EN 12664:2001; BSI: London, UK, 2001. [Google Scholar]
- Narloch, P.; Woyciechowski, P. Assessing Cement Stabilized Rammed Earth Durability in A Humid Continental Climate. Buildings 2020, 10, 26. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, A.; Varum, H.; Costa, A.; Silveira, D.; Oliveira, C. Seismic Retrofitting Solution of an Adobe Masonry Wall. Mater. Struct. Constr. 2013, 46, 203–219. [Google Scholar] [CrossRef] [Green Version]
Material | Stabilizer | Clay Fraction (<0.002 mm) | Density (kg/m3) | Method | Water Vapour Resistance Factor μ (-) | Reference |
---|---|---|---|---|---|---|
RE | 0% | 39% | 1660 | Wet | 4 | [12] |
Unfired clay bricks | 0% | 31–58% | 1940–2050 | Dry | 10.6–23.1 | [34] |
19.0–44.0 | ||||||
Extruded earth bricks | 0% | 23–38% | 1940–2070 | Wet | 3–7 | [37] |
Dry | 7–9 | |||||
SRE | 6% lime | 16% | 1700 | Dry | 9.4–10.6 | [39] |
CSRE | 7% cement | - | 1900 | Wet | 14.34 | [11] |
Sample Series | Soil Mixture | Cement Addition (%) | Water Content (%) (Equal to OMC) |
---|---|---|---|
703 C 0% | 703 | 0 | 10 |
703 C 3% | 703 | 3 | 10 |
703 C 6% | 703 | 6 | 10 |
703 C 9% | 703 | 9 | 10 |
433 C 0% | 433 | 0 | 8 |
433 C 3% | 433 | 3 | 8 |
433 C 6% | 433 | 6 | 9 |
433 C 9% | 433 | 9 | 9 |
Mineral Composition (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Mixtures | Clay Minerals | Including: | Goethite | Siderite | Carbonates | Organic Substance | Quartz and Carbonate Crumbs | ||
Beidellite | Kaolinite | Illite | |||||||
703 | 13.11 | 2.67 | 2.58 | 7.86 | - | 1.8 | - | - | 85.09 |
433 | 13.11 | 2.67 | 2.58 | 7.86 | - | 1.8 | - | - | 85.09 |
Sample Series | Average Dry Density (kg/m3) | Average Water Vapour Resistance Factor (-) | Average Coefficient of Thermal Conductivity (W/(mK)) |
---|---|---|---|
703 C 0% | 2093 | 16.6 | 0.74 |
703 C 3% | 2085 | 21.3 | 0.72 |
703 C 6% | 2106 | 24.1 | 0.72 |
703 C 9% | 2186 | 27.9 | 0.72 |
433 C 0% | 2158 | 16.6 | 0.70 |
433 C 3% | 2155 | 21.5 | 0.75 |
433 C 6% | 2167 | 25.4 | 0.68 |
433 C 9% | 2187 | 31.8 | 0.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narloch, P.; Piątkiewicz, W.; Pietruszka, B. The Effect of Cement Addition on Water Vapour Resistance Factor of Rammed Earth. Materials 2021, 14, 2249. https://doi.org/10.3390/ma14092249
Narloch P, Piątkiewicz W, Pietruszka B. The Effect of Cement Addition on Water Vapour Resistance Factor of Rammed Earth. Materials. 2021; 14(9):2249. https://doi.org/10.3390/ma14092249
Chicago/Turabian StyleNarloch, Piotr, Wojciech Piątkiewicz, and Barbara Pietruszka. 2021. "The Effect of Cement Addition on Water Vapour Resistance Factor of Rammed Earth" Materials 14, no. 9: 2249. https://doi.org/10.3390/ma14092249
APA StyleNarloch, P., Piątkiewicz, W., & Pietruszka, B. (2021). The Effect of Cement Addition on Water Vapour Resistance Factor of Rammed Earth. Materials, 14(9), 2249. https://doi.org/10.3390/ma14092249