Effect of Cathodic Protection on Reinforced Concrete with Fly Ash Using Electrochemical Noise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reinforced Concrete Specimens
2.2. System of Protection and Cathodic Overprotection
2.3. Electrochemical Noise Test
2.4. Scanning Electron Microscopy (SEM)
3. Results
3.1. Microstructure of OPC and OPCFA by Scanning Electron Microscopy.
3.2. Electrochemical Noise
3.2.1. Statistical Analysis
3.2.2. Power Spectral Density PSD Analysis
4. Discussion
5. Conclusions
- SEM and EDS observations indicated that the microstructures could be observed the hydration products (C-S-H gel) in both mixtures. Hydration influences some results on the Ca/Si ratio obtained, showing that the OPCFA mixtures had better hydration, indicating fewer pores in its microstructure.
- Results indicated that electrochemical noise tests have marked the difference the two mixtures microstructure, obtaining a uniform corrosion process for the specimens elaborated with the OPC mixture. Microstructure facilitated Cl− ions to the steel surface. Contrary to the mixture made with OPCFA where most of the specimens showed passivity.
- After trend removal, EN signals conserved transients and fluctuation behavior and gave practical corrosion information removing DC.
- EN results show that Rn and Ψ0 parameters should be considered as a counterpart to calculate corrosion resistance of reinforced concrete mixtures.
- Overprotected samples presented less corrosion resistance than protected samples. This behaviour could be to steel embrittlement by hydrogen adsorption.
- Samples with FA presented a higher trend to passivation than samples with OPC. Besides, FA samples showed higher corrosion resistance.
- Statistical and PSD results showed that uniform corrosion predominates the systems. Although current values are shallow, the variation is considerable, and complicated the analysis for current signals, as potential is more stable than current, makes statistical and PSD analysis easier.
- The current protection and cathodic overprotection did not indicate some tendency in both mixtures behavior, for these exposure times exposure and ratio w/c.
- The discordance of statistical results could be related to developing a different corrosion process on the surface when LI indicates localized corrosion and skewness uniform corrosion. It suggests that localized and uniform corrosion occurs on the surface, but uniform corrosion is the predominant system.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dacuan, C.N.; Abellana, V.Y. Bond Deterioration of Corroded-Damaged Reinforced Concrete Structures Exposed to Severe Aggressive Marine Environment. Int. J. Corros. 2021, 2021, 1–13. [Google Scholar] [CrossRef]
- Erick Maldonado-Bandala, E.; Higueredo-Moctezuma, N.; Nieves-Mendoza, D.; Gaona-Tiburcio, C.; Zambrano-Robledo, P.O.; Hernández-Martínez, H.; Almeraya-Calderón, F. Corrosion Behavior of AISI 1018 Carbon Steel in Localized Repairs of Mortars with Alkaline Cements and Engineered Cementitious Composites. Materials 2020, 13, 3327. [Google Scholar] [CrossRef]
- Tapan, M.; Aboutaha, R. Effect of steel corrosion and loss of concrete cover on strength of deteriorated RC columns. Constr. Build. Mater. 2011, 25, 2596–2603. [Google Scholar] [CrossRef]
- Azad, A.K.; Ahmad, S.; Azher, S.A. Residual strength of corrosion-damaged reinforced concrete beams. ACI Mater. J. 2007, 104, 40–47. [Google Scholar]
- Tondolo, F. Bond behaviour with reinforcement corrosion. Constr. Build. Mater. 2015, 93, 926–932. [Google Scholar] [CrossRef]
- Bilcik, J.; Holly, I. Effect of reinforcement corrosion on bond behaviou. Procedia Eng. 2013, 65, 248–253. [Google Scholar] [CrossRef]
- Ouglova, A.; Berthaud, Y.; Foct, F.; François, M.; Ragueneau, F.; Petre-Lazar, I. The influence of corrosion on bond properties between concrete and reinforcement in concrete structure. Mater. Struct. 2008, 41, 969–980. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, X.; Wang, Z.; Huang, H.; Zhou, H. An experimental study on effect of steel corrosion on the bondslip performance of reinforced concrete. In Proceedings of the 5th International Conference on Durability of Concrete Structures, Shenzhen University, Shenzhen, China, 30 June–1 July 2016. [Google Scholar]
- Mahasenan, N.; Smith, S.; Humphreys, K. The cement industry and global climate change current and potential future cement industry CO2 emissions. In Greenhouse Gas Control Technologies, Proceedings of the 6th International Conference, Kyopto, Japan, 1–4 October 2002; Elsevier: Amsterdam, The Netherlands, 2003; pp. 995–1000. [Google Scholar]
- Gartner, E. Industrially interesting approaches to “low-CO2” cements. Cem. Concr. Res. 2004, 34, 1489–1498. [Google Scholar] [CrossRef]
- Wang, J.; Wu, X.L.; Wang, J.X.; Liu, C.Z.; Lai, Y.M.; Hong, Z.M.; Zheng, J.P. Hydrothermal synthesis and characterization of alkali-activated slag–fly ash–metakaolin cementitious materials. Microporous Mesoporous Mater. 2012, 155, 186–191. [Google Scholar] [CrossRef]
- Baltazar, M.A.; Bastidas, D.M.; Santiago, G.; Mendoza, J.M.; Gaona, C.; Bastidas, J.M.; Almeraya, F. Effect of silica fume and fly ash admixtures on the corrosion behavior of AISI 304 embedded in concrete exposed in 3.5% NaCl solution. Materials 2019, 12, 4007. [Google Scholar] [CrossRef] [Green Version]
- Ariza-Figueroa, H.A.; Bosch, J.; Baltazar-Zamora, M.A.; Croche, R.; Santiago-Hurtado, G.; Landa-Ruiz, L.; Mendoza-Rangel, J.M.; Bastidas, J.M.; Almeraya-Calderón, F.; Bastidas, D.M. Corrosion Behavior of AISI 304 Stainless Steelreinforcements in SCBA-SF Ternary Ecological 3 Concrete exposed to MgSO4. Materials 2020, 13, 2412. [Google Scholar] [CrossRef]
- Criado, M.; Bastidas, D.M.; Fajardo, S.; Fernández-Jiménez, A.; Bastidas, J.M. Corrosion behaviour of a new low-nickel stainless steel embedded in activated fly ash mortars. Cem. Concr. Compos. 2011, 33, 644–652. [Google Scholar] [CrossRef]
- Troconis de Rincón, O.; Montenegro, J.C.; Vera, R.; Carvajal, A.M.; De Gutiérrez, R.M.; Del Vasto, S.; Saborio, E.; Torres-Acosta, A.; Pérez-Quiroz, J.; Martínez-Madrid, M.; et al. Reinforced Concrete Durability in Marine Environments DURACON Project: Long-Term Exposure. Corrosion 2016, 72, 824–833. [Google Scholar] [CrossRef]
- Santiago, G.; Baltazar, M.A.; Galván, R.; López, L.; Zapata, F.; Zambrano, P.; Gaona, C.; Almeraya, F. Electrochemical Evaluation of Reinforcement Concrete Exposed to Soil Type SP Contaminated with Sulphates. Int. J. Electrochem. Sci. 2016, 11, 4850–4864. [Google Scholar] [CrossRef]
- Talha Junaid, M.; Kayali, O.; Khennane, A.; Black, J. A mix design procedure for low calcium alkali activated fly ash-based concretes. Constr. Build. Mater. 2015, 79, 301–310. [Google Scholar] [CrossRef]
- Habert, G.; d’Espinose de Lacaillerie, J.B.; Roussel, N. An environmental evaluation of geopolymer based concrete production: Reviewing current research trends. J. Clean. Prod. 2011, 19, 1229–1238. [Google Scholar] [CrossRef]
- Maldonado-Bandala, E.; Jiménez-Quero, V.; Olguin-Coca, J.; Lizarraga, L.G.; Baltazar-Zamora, M.A.; Ortiz-C, A.; Almeraya, C.F.; Zambrano, R.P.; Gaona-Tiburcio, C. Electrochemical Characterization of Modified Concretes with Sugar Cane Bagasse Ash. Int. J. Electrochem. Sci. 2011, 6, 4915–4926. [Google Scholar]
- Padhi, R.; Mukharjee, B. Effect of rice husk ash on compressive strength of recycled aggregate concrete. J. Basic Appl. Eng. Res. 2017, 4, 356–359. [Google Scholar]
- Baltazar, M.A.; Mendoza, J.M.; Croche, R.; Gaona, C.; Hernández, C.; López, L.; Olguín, F.; Almeraya, F. Corrosion behavior of galvanized steel embedded in concrete exposed to soil type MH contaminated with chlorides. Front. Mater. 2019, 6, 6. [Google Scholar] [CrossRef]
- Pellegrini Cervantes, J.M.; Barrios Durstewitz, P.C.; Núñez Jaquez, R.; Almeraya Calderón, F.; Rodríguez-Rodríguez, M.; Fajardo-San-Miguel, G.; Martinez-Villafañe, A. Accelerated corrosion test in mortars of plastic consistency with replacement of rice husk ash and nano-SiO2. Int. J. Electrochem. Sci. 2015, 10, 8630–8643. [Google Scholar]
- Pellegrini-Cervantes, M.J.; Almeraya-Calderon, F.; Borunda-Terrazas, A.; Bautista-Margulis, R.G.; Chacón-Nava, J.G.; Fajardo-San-Miguel, G.; Almaral-Sanchez, J.L.; Barrios-Durstewitz, C.; Martinez-Villafañe, A. Corrosion Resistance, Porosity and Strength of lended Portland Cement Mortar Containing Rice Husk Ash and Nano-SiO2. Int. J. Electrochem. Sci. 2013, 8, 10697–10710. [Google Scholar]
- Saraswathy, V.; Song, H.W. Corrosion performance of rice husk ash blended concrete. Constr. Build. Mater. 2007, 21, 1779–1784. [Google Scholar] [CrossRef]
- Abu Bakar, B.H.; Putrajaya, R.; Abdulaziz, H. Malaysian rice husk ash–improving the durability and corrosion resistance of concrete: Pre-review. Concr. Res. Lett. 2010, 11, 6–13. [Google Scholar]
- Hossain, M.M.; Karim, M.R.; Hasan, M.; Hossain, M.K.; Zain, M.F.M. Durability of mortar and concrete made up of pozzolans as a partial replacement of cement: A review. Constr. Build. Mater. 2016, 116, 128–140. [Google Scholar] [CrossRef]
- García, J.; Almeraya-Calderon, F.; Barrios, C.; Nuñez, R.; Lopez, M.; Rodríguez, M.; Martínez, A.; Bastidas, J.M. Effect of cathodic protection on steel–concrete bond strength using ion migration measurements. Cem. Concr. Compos. 2012, 4, 242–247. [Google Scholar] [CrossRef]
- Corral, H.R.; Arredondo, R.S.P.; Neri, F.M.; Gómez, S.J.M.; Almeraya, C.F.; Castorena, G.J.H.; Almaral, S.J. Sulfate attack and reinforcement corrosion in concrete with recycled concrete aggregates and supplementary cementing materials. Int. J. Electrochem. Sci. 2011, 6, 613–621. [Google Scholar]
- Corral-Higuera, R.; Arredondo-Rea, P.; Neri-Flores, M.A.; Gómez-Soberón, J.M.; Almaral-Sánchez, J.L.; Castorena-González, J.C.; Almeraya-Calderón, F. Chloride ion penetrability and Corrosion Behavior of Steel in Concrete with Sustainability Characteristics. Int. J. Electrochem. Sci. 2011, 6, 958–970. [Google Scholar]
- Erdoğdu, S.; Kondratovab, L.; Bremner, T. Determination of chloride diffusion coefficient of concrete using open-circuit potential measurements. Cem. Concr. Res. 2004, 34, 603. [Google Scholar] [CrossRef]
- Wyatt, B.S. Cathodic protection of steel in concrete. Corros. Sci. 1993, 35, 1601–1615. [Google Scholar] [CrossRef]
- Qingnan Zhana, E.; Abbas, Z.; Tang, L. Predicting degradation of the anode–concrete interface for impressed current cathodic protection in concrete. Constr. Build. Mater. 2018, 185, 57–68. [Google Scholar] [CrossRef]
- Pedeferri, P. Cathodic protection and cathodic prevention. Constr. Build. Mater. 1996, 10, 391–402. [Google Scholar] [CrossRef]
- Almeraya-Calderón, F.; Estupiñán, F.; Zambrano, R.P.; Martínez-Villafañe, A.; Borunda, T.A.; Colás, O.R.; Gaona-Tiburcio, C. Análisis de los transitorios de ruido electroquímico para aceros inoxidables 316 y -DUPLEX 2205 en NaCl y FeCl. Rev. Metal. 2012, 4, 147. [Google Scholar] [CrossRef]
- Mehdipour, M.; Naderi, R.; Markhali, B.P. Electrochemical study of effect of the concentration of azole derivatives on corrosion behavior of stainless steel in H2SO4. Prog. Org. Coat. 2014, 77, 1761–1767. [Google Scholar] [CrossRef]
- Kelly, R.G.; Scully, J.R.; Shoesmith, D.W.; Buchheit, G. Electrochemical Techniques in Corrosion Science and Engineering; Taylor & Francis: Boca Raton, FL, USA, 2002; pp. 54–123. [Google Scholar]
- Kearns, J.R.; Eden, D.A.; Yaffe, M.R.; Fahey, J.V.; Reichert, D.L.; Silverman, D.C. ASTM Standardization of Electrochemical Noise Measurement. In Electrochemical Noise Measurement for Corrosion Applications; Kearns, J.R., Scully, J.R., Roberge, P.R., Reirchert, D.L., Dawson, L., Eds.; ASTM International, Materials Park: Russell, OH, USA, 1996; pp. 446–471. [Google Scholar]
- Ma, C.; Song, S.; Gao, Z.; Wang, J.; Hu, W.; Behnamian, Y.; Xia, D.H. Electrochemical noise monitoring of the atmospheric corrosion of steels: Identifying corrosion form using wavelet analysis. Corros. Eng. Sci. Technol. 2017, 5, 1–9. [Google Scholar] [CrossRef]
- Ma, C.; Wang, Z.; Behnamian, Y.; Gao, Z.; Wu, Z.; Qin, Z.; Xia, D.H. Measuring atmospheric corrosion with electrochemical noise: A review of contemporary methods. Measurement 2019, 138, 54–79. [Google Scholar] [CrossRef]
- Xia, D.H.; Song, S.; Behnamian, Y.; Hu, W.; Cheng, F.; Luo, J.L.; Huet, F. Review—Electrochemical Noise Applied in Corrosion Science: Theoretical and Mathematical Models towards Quantitative Analysis. J. Electrochem. Soc. 2020, 167, 081507. [Google Scholar] [CrossRef]
- Botana, P.J.; Bárcena, M.M.; Villero, Á.A. Ruido Electroquímico: Métodos de Análisis; Septem Ediciones: Cadiz, Spain, 2002; pp. 50–70. [Google Scholar]
- Gaona-Tiburcio, C.; Aguilar, L.M.R.; Zambrano-Robledo, P.; Estupiñán-López, F.; Cabral-Miramontes, J.A.; Nieves-Mendoza, D.; Castillo-González, E.; Almeraya-Calderón, F. Electrochemical Noise Analysis of Nickel Based Superalloys in Acid Solutions. Int. J. Electrochem. Sci. 2014, 9, 523–533. [Google Scholar]
- Montoya-Rangel, M.; de Garza-Montes, O.N.; Gaona-Tiburcio, C.; Colás, R.; Cabral-Miramontes, J.; Nieves-Mendoza, D.; Maldonado-Bandala, E.; Chacón-Nava, J.; Almeraya-Calderón, F. Electrochemical noise measurements of advanced high-strength steels in different solutions. Metals 2020, 10, 1232. [Google Scholar] [CrossRef]
- Monticelli, C. Evaluation of Corrosion Inhibitors by Electrochemical Noise Analysis. J. Electrochem. Soc. 1992, 139, 706. [Google Scholar] [CrossRef]
- Park, C.J.; Kwon, H.S. Electrochemical noise analysis of localized corrosion of duplex stainless steel aged at 475 °C. Mater. Chem. Phys. 2005, 91, 355–360. [Google Scholar] [CrossRef]
- Suresh, G.U.; Kamachi, M.S. Electrochemical Noise Analysis of Pitting Corrosion of Type 304L Stainless Steel. Corrosion 2014, 70, 283–293. [Google Scholar] [CrossRef]
- Cabral-Miramontes, J.A.; Barceinas-Sánchez, J.D.O.; Poblano-Salas, C.A.; Pedraza-Basulto, G.K.; Nieves-Mendoza, D.; Zambrano-Robledo, P.C.; Almeraya-Calderón, F.; Chacón-Nava, J.G. Corrosion Behavior of AISI 409Nb Stainless Steel Manufactured by Powder Metallurgy Exposed in H2SO4 and NaCl Solutions. Int. J. Electrochem. Sci. 2013, 8, 564–577. [Google Scholar]
- Nagiub, A.M. Electrochemical Noise Analysis for Different Green Corrosion Inhibitors for Copper Exposed to Chloride Media. Port. Electrochim. Acta 2017, 35, 201–210. [Google Scholar] [CrossRef]
- Dawson, D.L. Electrochemical Noise Measurement: The definitive In-Situ Technique for Corrosion Applications? In Electrochemical Noise Measurement for Corrosion Applications STP 1277; Kearns, J.R., Scully, J.R., Roberge, P.R., Reirchert, D.L., Dawson, L., Eds.; ASTM International, Materials Park: Russell, OH, USA, 1996; pp. 3–39. [Google Scholar]
- Cottis, R.; Turgoose, S.; Mendoza-Flores, J. The Effects of Solution Resistance on Electrochemical Noise Resistance Measurements: A Theorical Analysis. In Electrochemical Noise Measurement for Corrosion Applications STP 1277; Kearns, J.R., Scully, J.R., Roberge, P.R., Reirchert, D.L., Dawson, L., Eds.; ASTM International, Materials Park: Russell, OH, USA, 1996; pp. 93–100. [Google Scholar]
- Jáquez-Muñoz, J.M.; Gaona-Tiburcio, C.; Cabral-Miramontes, J.; Nieves-Mendoza, D.; Maldonado-Bandala, E.; Olguín-Coca, J.; López-León, L.D.; Flores-De los Rios, J.P.; Almeraya-Calderón, F. Electrochemical Noise Analysis of the Corrosion of Titanium Alloys in NaCl and H2SO4 Solutions. Metals 2021, 11, 105. [Google Scholar] [CrossRef]
- Lara-Banda, M.; Gaona-Tiburcio, C.; Zambrano-Robledo, P.; Delgado-E, M.; Cabral-Miramontes, J.A.; Nieves-Mendoza, D.; Maldonado-Bandala, E.; Estupiñan-López, F.; Chacón-Nava, J.G.; Almeraya-Calderón, F. Alternative to Nitric Acid Passivation of 15-5 and 17-4PH Stainless Steel Using Electrochemical Techniques. Materials 2020, 13, 2836. [Google Scholar] [CrossRef] [PubMed]
- NMX-C-414-ONNCCE-2014–Industria de la Construcción—Cementantes Hidráulicos - Especificaciones y Métodos de Ensayo; ONNCCE, Cd.: México City, Mexico, 2014.
- ASTM. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete; ASTM C618-03 Standard; ASTM International: West Conshohocken, PA, USA, 2008. [Google Scholar] [CrossRef]
- ACI. ACI 211.1-2004 Standard, Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete; American Concrete Institute: Detroit, MI, USA, 2004. [Google Scholar]
- ONNCCE. NMX-C-159-ONNCCE-2004, Industria de la Construcción—Concreto—Elaboración y Curado de Especímenes en el Laboratorio; ONNCCE, Cd.: México City, Mexico, 2004. [Google Scholar]
- ASTM. Standard Guide for Electrochemical Noise Measurement; ASTM G199-09; ASTM International: West Conshohocken, PA, USA, 2009. [Google Scholar]
- Song, G. Equivalent circuit model for AC electrochemical impedance spectroscopy of concrete. Cem. Concr. Res. 2000, 30, 1723–1730. [Google Scholar] [CrossRef]
- Neville, A. Properties of the Concrete; John Wiley & Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Morgan, J.H. Cathodic Protection; National Association of Corrosion Engineers: Houston, TX, USA, 1993. [Google Scholar]
- Stern, M.; Geary, A.L. Electrochemical polarization. I. A theoretical analysis of the shape of the polarization curves. J. Electrochem. Soc. 1957, 104, 56–63. [Google Scholar] [CrossRef]
- Eden, D.A.; John, D.G.; Dawson, J.L. Corrosion Monitoring. International Patent WO 87/07022, 19 November 1997. Available online: https://patentimages.storage.googleapis.com/19/ca/d4/c180ce2c0b9dfe/WO1987007022A1.pdf (accessed on 15 March 2021).
- Mansfeld, F.; Sun, Z. Technical Note: Localization Index Obtained from Electrochemical Noise Analysis. Corrosion 1999, 55, 915–918. [Google Scholar] [CrossRef]
- Reid, S.A.; Eden, D.A. Assessment of Corrosion. US 6,264,824 B1, 24 July 2001. Available online: http://www.khdesign.co.uk/Patents/US6264824.Eden%20AI.pdf (accessed on 15 March 2021).
- Cottis, R. Interpretation of Electrochemical Noise Data. Corrosion 2001, 57, 265–285. [Google Scholar] [CrossRef]
- Homborg, A.M.; Tinga, T.; Zhang, X.; Van Westing, E.P.M.; Ferrari, G.M.; Wit, J.H.W.; Mol, J.M.W. A Critical Appraisal of the Interpretation of Electrochemical Noise for Corrosion Studies. Corrosion 2017, 70, 971–987. [Google Scholar] [CrossRef]
- Kelekanjeri, V.S.K.G.; Moss, L.K.; Gerhardt, R.A.; Ilavsky, J. Quantification of the coarsening kinetics of γ’ precipitates in Waspaloy microstructures with different pri-or homogenizing treatments. Acta Mater. 2009, 57, 4658. [Google Scholar] [CrossRef]
- Legat, A.; Dolecek, V. Corrosion Monitoring System Based on Measurement and Analysis of electrochemical Noise. Corrosion 1995, 51, 295–300. [Google Scholar] [CrossRef]
- Lee, C.C.; Mansfeld, F. Analysis of electrochemical noise data for a passive system in the frequency domain. Corros. Sci. 1998, 40, 959–962. [Google Scholar] [CrossRef]
- Homborg, A.M.; Cottis, R.A.; Mol, J.M.C. An integrated approach in the time, frequency and time-frequency domain for the identification of corrosion using electrochemical noise. Electrochim. Acta 2016, 222, 627–640. [Google Scholar] [CrossRef]
- Mejia de Gutiérrez, R. Effect of supplementary cementing materials on the concrete corrosion control. Rev. Metal. 2003, 39, 250–255. [Google Scholar] [CrossRef]
- Li, X.; Yan, J.; Huaquan Yang, H. Influence of Fly Ash on Microstructure of Complex Binder Pastes. Adv. Mater. Res. 2015, 1088, 608–612. [Google Scholar] [CrossRef]
- Hou, J.; Mei, F.; Mei, Z. Quantitative Research on Strength Characteristics of Phosphogypsum Consolidation Materials. Appl. Mech. Mater. 2013, 307, 358–363. [Google Scholar] [CrossRef]
- Marceau, M.L.; Gajda, J.; VanGeem, M.G. Use of Fly Ash in Concrete: Normal and High Volume Ranges; PCA R&D Serial No. 2604; Portland Cement Association: Skokie, IL, USA, 2002. [Google Scholar]
- Helmuth, R. Fly Ash in Cement and Concrete; SP040; Portland Cement Association: Skokie, IL, USA, 1987; 203p. [Google Scholar]
- Malhotra, V.M.; Zhang, M.-H.; Read, P.H.; Ryell, J. Long term mechanical properties and durability characteristics of high strength/high-performance concrete incorporating supplementary cementing materials under outdoor exposure conditions. ACI Mater. J. 2002, 97, 518–525. [Google Scholar]
- Thomas, M.D.A.; Shehata, M.; Shashiprakash, S.G. The Use of Fly Ash in Concrete: Classification by Composition. Cem. Concr. Aggreg. 1999, 12, 105–110. [Google Scholar]
- Yoon-Seok, C.; Jung-Gu, K.; Kwang-Myong, L. Corrosion behavior of steel bar embedded in fly ash concrete. Corros. Sci. 2006, 48, 1733–1745. [Google Scholar] [CrossRef]
- Alvarez, G.M.; Galvele, R.J. The mechanism of pitting of high purity iron in NaCl solutions. Corros. Sci. 1984, 24, 27–48. [Google Scholar] [CrossRef]
- Feliu, V.; Gonzalez, J.A.; Andrade, C.; Feliu, S. Equivalent circuit for modelling the steel-concrete interface. I. experimental evidence and theoretical predictions. Corros. Sci. 1998, 40, 975–993. [Google Scholar] [CrossRef]
- Andrade, C. Calculation of chloride diffusion coefficients in concrete from ionic migration measurements. Cem. Concr. Res. 1993, 23, 724–742. [Google Scholar] [CrossRef]
- Koleva, D.A.; Guo, Z.; Breugel, K.; de Wit, J.H. Conventional and pulse cathodic protection of reinforced concrete: Electrochemical behavior of the steel reinforcement after corrosion and protection. Mater. Corros. 2009, 60, 344–354. [Google Scholar] [CrossRef]
- Koleva, D.A.; Hu, J.; Fraaij, A.; Beek, H. Corrosion and Prevention 2005. In Proceedings of the Conference Australian Corrosion Association, CAP05, Gold Coast, Australia, 20–23 November 2005. [Google Scholar]
- Koleva, D.A.; Breugel, K.W.; de Wit, J.H.; Westing, E.; Copuroglu, O.; Fraaij, L.A. Correlation of microstructure, electrical properties and electrochemical phenomena in reinforced mortar. Breakdown to multi-phase interface structures. Part II: Pore network, electrical properties and electrochemical response. Mater. Charact. 2008, 59, 290. [Google Scholar] [CrossRef]
- Lu, Y.; Hu, J.; Li, S.; Tang, W. Active and Passive Protection of Steel Reinforcement in Concrete Column Using Carbon Fibre Reinforced Polymer against Corrosion. Electrochim. Acta 2018, 278, 124–136. [Google Scholar] [CrossRef]
- Zampronio, M.A.; Fassini, F.D.; Miranda, P.E.V. Design of ion-implanted hydrogen contamination barrier layers for steel. Surf. Coat. Technol. 1995, 70, 203–209. [Google Scholar] [CrossRef]
- Chang, J.J. A study of the bond degradation of rebar due to cathodic protection current. Cem. Concr. Res. 2002, 32, 657–663. [Google Scholar] [CrossRef]
- Chang, J.J.; Yeih, W.; Huang, R. Degradation of the bond strength between rebar and concrete due to the impressed cathodic current. J. Mater. Sci. Tech. 1999, 7, 89–93. [Google Scholar]
- Rasheeduzzafar, M.G.A.; Alsulaimani, G.J. Degradation of bond between reinforcing steel and concrete due to cathodic protection current. ACI Mater. J. 1993, 90, 8–15. [Google Scholar]
- Garcés, P.; Andión, L.G.; Zornoza, E.; Bonilla, M.; Payá, J. The effect of processed fly ashes on the durability and the corrosion of steel rebars embedded in cementmodified fly ash mortars. Cem. Concr. Compos. 2010, 32, 204–210. [Google Scholar] [CrossRef]
Material | Compounds (wt.%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
CaO | SiO2 | Al2O3 | Fe2O3 | MgO | SO42− | Na2O | K2O | MnO | TiO2 | |
Ordinary Portland Cement (CPC) | 65.31 | 18.47 | 4.13 | 3.80 | 1.42 | 4.64 | 0.46 | 1.13 | 0.19 | 0.29 |
Fly Ash (FA) | 3.26 | 57.3 | 28.14 | 5.21 | 0.56 | 0.32 | 0.51 | 1.52 | - | 1.21 |
Mixture | Fly Ash kg/m3 | Aggregate Coarse kg/m3 | Aggregate Fine kg/m3 | Cement kg/m3 | Water kg/m3 |
---|---|---|---|---|---|
OPC | - | 1049 | 781 | 310 | 205 |
OPCFA | 46.5 | 1049 | 781 | 263.5 | 205 |
Corrosion Type | LI (Value Range) |
---|---|
Localized | 1.0–0.1 |
Mixed | 0.1–0.01 |
Uniform | 0.01–0.001 |
Corrosion Type | Potential | Current | ||
---|---|---|---|---|
Skewness | Kurtosis | Skewness | Kurtosis | |
Uniform | <±1 | <3 | <±1 | <3 |
Pitting | <−2 | >>3 | >±2 | >>3 |
Transgranular (SCC) | 4 | 20 | −4 | 20 |
Intergranular (SCC #1) | −6.6 | 18 to 114 | 1.5 to 3.2 | 6.4 to 15.6 |
Intergranular (SCC #2) | −2 to −6 | 5 to 45 | 3 to 6 | 10 to 60 |
Sample | Rn (Ω·cm2) | icorr (mA/cm2) | LI | Corrosion Type | Skewness (Pot) | Corrosion Type | Kurtosis (Pot) | Corrosion Type |
---|---|---|---|---|---|---|---|---|
Protected | ||||||||
2OPCFA-P | 2779.05 | 0.0095557 | 1 | Localized | −0.82 | Uniform | 6.7 | Pitting |
2OPC-P | 826.78 | 0.31447 | 1 | Localized | −0.65 | Uniform | 2.96 | Pitting |
3OPCFA-P | 383777.68 | 0.0000677 | 1 | Localized | 0.19 | Uniform | 2.89 | Uniform |
3OPC-P | 1830.34 | 0.0142 | 1 | Localized | 0.38 | Uniform | 2.81 | Uniform |
Overprotected | ||||||||
2OPCFA-OP | 404.08 | 0.0643422 | 0.49 | Localized | −1.77 | Pitting | 14.24 | Pitting |
2OPC-OP | 296.74 | 0.876967 | 0.93 | Localized | 0.46 | Uniform | 3.11 | Pitting |
3OPCFA-OP | 177951.805 | 0.0001461 | 1 | Localized | 0.09 | Uniform | 2.93 | Uniform |
3OPC-OP | 493.7 | 0.0526635 | 1 | Localized | 1.9 | Pitting | 14 | Pitting |
Corrosion Type | dB(V)·Decade−1 | dB(A)·Decade−1 | ||
---|---|---|---|---|
Minimum | Maximum | Minimum | Maximum | |
Uniform | 0 | −7 | 0 | −7 |
Pitting | −20 | −25 | −7 | −14 |
Passive | −15 | −25 | −1 | 1 |
Sample | ψ0 (dBi) | Β (dB [V]) |
---|---|---|
2OPCFA-P | −143.716496 | −7 |
2OPC-P | −64.8956506 | −8 |
3OPCFA-P | −146.383815 | −12 |
3OPC-P | −113.95617 | −2 |
2OPCF-OP | −118.723889 | −2 |
2OPC-OP | −122.621082 | −3 |
3OPCFA-OP | −123.658499 | −23 |
3OPC-OP | −81.2552579 | −8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Contreras, J.; Gaona-Tiburcio, C.; López-Cazares, I.; Sanchéz-Díaz, G.; Ibarra Castillo, J.C.; Jáquez-Muñoz, J.; Nieves-Mendoza, D.; Maldonado-Bandala, E.; Olguín-Coca, J.; López-León, L.D.; et al. Effect of Cathodic Protection on Reinforced Concrete with Fly Ash Using Electrochemical Noise. Materials 2021, 14, 2438. https://doi.org/10.3390/ma14092438
García-Contreras J, Gaona-Tiburcio C, López-Cazares I, Sanchéz-Díaz G, Ibarra Castillo JC, Jáquez-Muñoz J, Nieves-Mendoza D, Maldonado-Bandala E, Olguín-Coca J, López-León LD, et al. Effect of Cathodic Protection on Reinforced Concrete with Fly Ash Using Electrochemical Noise. Materials. 2021; 14(9):2438. https://doi.org/10.3390/ma14092438
Chicago/Turabian StyleGarcía-Contreras, Jorge, Citlalli Gaona-Tiburcio, Irene López-Cazares, Guillermo Sanchéz-Díaz, Juan Carlos Ibarra Castillo, Jesús Jáquez-Muñoz, Demetrio Nieves-Mendoza, Erick Maldonado-Bandala, Javier Olguín-Coca, Luis Daimir López-León, and et al. 2021. "Effect of Cathodic Protection on Reinforced Concrete with Fly Ash Using Electrochemical Noise" Materials 14, no. 9: 2438. https://doi.org/10.3390/ma14092438
APA StyleGarcía-Contreras, J., Gaona-Tiburcio, C., López-Cazares, I., Sanchéz-Díaz, G., Ibarra Castillo, J. C., Jáquez-Muñoz, J., Nieves-Mendoza, D., Maldonado-Bandala, E., Olguín-Coca, J., López-León, L. D., & Almeraya-Calderón, F. (2021). Effect of Cathodic Protection on Reinforced Concrete with Fly Ash Using Electrochemical Noise. Materials, 14(9), 2438. https://doi.org/10.3390/ma14092438