Study of Cytotoxic Properties of an Experimental Preparation with Features of a Dental Infiltrant
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Experimental Preparation
4.2. Polymerisation of Preparations
4.3. Obtaining Extracts of the Tested Preparations
4.4. Evaluation of Cytotoxicity of the Tested Preparation Extracts
4.4.1. Microscopic Observations
4.4.2. Viability Assessment of L-929 Cells Contacted with Extracts of the Tested Preparations
- Ab—absorbance of the test sample,
- Ak—absorbance of the control sample.
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skucha-Nowak, M.; Skorus, M.; Nowak, M.; Tanasiewicz, M. Stomatologia minimalnie inwazyjna. Twój Przegląd Stomatol. 2018, 3, 23–26. [Google Scholar]
- Skucha-Nowak, M.; Fischer, M.; Tanasiewicz, M.; Machorowska-Pieniążek, A.; Skaba, D.; Kielbassa, A. Attempt to modify the chemical model of enamel demineralization used in microinvasive dentistry. J. Stomatol. 2019, 72, 17–22. [Google Scholar]
- Showkat, N.; Singh, G.; Singla, K.; Sareen, K.; Chowdhury, C.; Jindal, L. Minimal Invasive Dentistry: Literature Review. J. CMRO 2020, 3, 631–636. [Google Scholar] [CrossRef]
- Dawett, B.; Young, S.; Deery, C.; Banerjee, A. Minimally Invasive Selective Caries Removal put into Practice. Dent. Update 2020, 47, 10. [Google Scholar] [CrossRef]
- Berczyński, P.; Gmerek, A.; Buczkowska-Radlińska, J. Remineralizing methods in early caries lesions—Review of the literature. Pom. J. Life Sci. 2015, 61, 68–72. [Google Scholar] [CrossRef] [Green Version]
- Perkowska, M. Contemporary opinions regarding dental caries treatment—Review of literature. Nowa Stomatol. 2010, 2, 78–81. [Google Scholar]
- Skucha-Nowak, M.; Nowa-Wachol, A.; Skaba, D.; Wachol, K.; Korytkowska-Wałach, A. Use of ytterbium trifluoride in the field of microinvasive dentistry—An in vitro preliminary study. Coatings 2020, 10, 915. [Google Scholar] [CrossRef]
- Cappare, P.; Tete, G.; Sberna, M.T.; Panine-Bordignon, P. The Emerging Role of Stem Cells in Regenerative Dentistry. Curr. Gene Ther. 2020, 20, 259–268. [Google Scholar] [CrossRef]
- Skucha-Nowak, M.; Machorowska-Pieniążek, A.; Tanasiewicz, M. Assesing the Penetrating Abilities of Experimental Preparation with Dental Infiltrant Features Using Optical Microscope: Preliminary Study. Adv. Clin. Exp. Med. 2016, 25, 961–969. [Google Scholar] [CrossRef]
- Skucha-Nowak, M.; Fischer, M.; Nowak, M.; Łopaciński, M.; Tanasiewicz, M. Infiltracja odwapnionego szkliwa jako sposób leczenia próchnicy. Med. Trib. Stomatol. 2019, 4, 5–10. [Google Scholar]
- Skucha-Nowak, M.; Tanasiewicz, M.; Gibas, M.; Twardawa, H. Analysis of the composition of preparations used as a barrier to protect tissues of the patient against the influence of the environment in the oral cavity. Pol. J. Environ. Stud. 2013, 22, 53–57. [Google Scholar]
- Skucha-Nowak, M. Attempt to assess the infiltration of enamel made with experimental preparation using a scanning electron microscope. J. Med. 2015, 10, 238–248. [Google Scholar] [CrossRef]
- Zakizade, M.; Davoudi, A.; Akhavan, A.; Shirban, F. Effect of Resin Infiltration Technique on Improving Surface Hardness of Enamel Lesions: A Systematic Review and Meta-analysis. J. Evid. Based Dent. Pract. 2020, 2, 101405. [Google Scholar] [CrossRef] [PubMed]
- Kajka-Hawryluk, K.; Furmaniak, K.; Gromak-Zaremba, J.; Szopiński, K. Bitewing radiography in modern pediatric dentistry. Nowa Stomatol. 2015, 20, 73–80. [Google Scholar] [CrossRef]
- Zielińska, R.D.; Piątowska, D.; Ostrowska, A.; Bołtacz-Rzepkowska, E. The Evaluation of Caries Lesion Progression After Infiltrantion with a Low-Viscous Resin: In vitro Study. Dent. Med. Probl. 2016, 53, 358–364. [Google Scholar] [CrossRef] [Green Version]
- Nowak, Ł.R. Wybrane zagadnienia atybiotykoterapii zakażeń bakteryjnych u chorych na nowotwory złośliwe. Nowotw. J. Oncol. 2016, 66, 222–233. [Google Scholar] [CrossRef]
- Crespi, R.; Cappare, P.; Romanos, G.E.; Mariani, E.; Benasciutti, E.; Gherlone, E. Corticocancellous porcine bone in the healing of human extraction sockets: Combining histomorphometry with osteoblast gene expression profiles in vitro. Int. J. Oral. Maxillofac Implant. 2021, 26, 866–872. [Google Scholar]
- Brook, I.; Wexler, H.M.; Goldstein, E.J.C. Antianaerobic Antimicrobials: Spectrum and Susceptibility Testing. Clin. Microbiol. Rev. 2013, 26, 526–546. [Google Scholar] [CrossRef] [Green Version]
- Krzysztoń-Russjan, J.; Książek, I.; Anuszewska, E. Porównanie użyteczności testów MTT i EZ4U stosowanych do oceny cytotoksyczności ksenobiotyków. Farm. Pol. 2009, 65, 395–402. [Google Scholar]
- European Norm PN-EN ISO 10993-5:2009 Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity (ISO 10993-5:2009); ISO (the International Organization for Standardization): Warsaw, Poland, 2009.
- Collares, F.M.; Garcia, I.M.; Bohns, F.R.; Melo, M.A.; Branco Leitune, V.C. Guanidine hydrochloride polymer additive to undertake ultraconservative resin infiltrant against Streptococcus Mutans. Eur. Polym. J. 2020, 133, 109746. [Google Scholar] [CrossRef]
- Kraus, A.; Becker, K.; Chrapla, K. Literature demineralization in patients treated with fived orthodontic appliances. Ortod. W Prakt. 2013, 2, 40–43. [Google Scholar]
- Meilnik-Błaszczak, M. Incipient demineralization lesions-causes, signs and therapeutic approach. Nowa Stomatol. 2016, 21, 74–78. [Google Scholar]
- Cattoni, F.; Tete, G.; Calloni, A.M.; Manazza, F.; Gastaldi, G.; Cappare, P. Milled versus moulded mock-ups based on the superimposition of 3D meshes from digital oral impressions: A comparative in vitro study in the aesthetic area. BMC Oral. Health 2019, 19, 230. [Google Scholar] [CrossRef] [PubMed]
- Mattousch, T.J.; Van der Veen, M.H.; Zenter, A. Caries lesions after orthodontic treatment followed by quantitative light-induced fluorescence: A 2-year follow-up. Eur. J. Orthod 2007, 29, 294–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamer, G.T. The Esthetic Outcome and the Infiltration Capacity of Three Resin Composite Sealers Compared to ICON (DMG, America). Ph.D. Thesis, University of Iowa, Iowa City, IA, USA, 2018. [Google Scholar]
- Prasa, K.L.; Penta, P.K.; Ramya, K.M. Spectrophotometric evaluation of white spot lesion treatment using novel resin infiltration material (ICON). J. Conserv. Dent. 2018, 21, 531–535. [Google Scholar]
- Paris, S.; Schwendicke, F.; Seddig, S.; Muller, W.D.; Dorfer, C.; Meyer-Lueckel, H. Micro-hardness and mineral loss of enamel lesions after infiltration with various resins: Influence of infiltrant composition and application frequency in vitro. J. Dent. 2013, 41, 543–548. [Google Scholar] [CrossRef]
- Yuan, H.; Li, J.; Chen, L.; Cheng, L.; Cannon, R.D.; Mei, L. Esthetic comparison of white-spot lesion treatment modalities using spectrometry and fluorescence. Angle Orthod. 2014, 84, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Schmidlin, P.R.; Sener, B.; Attin, T.; Wiegand, A. Protection of sound enamel and artificial enamel lesions against demineralisation: Caries infiltrant versus adhesive. J. Dent. 2012, 40, 851–856. [Google Scholar] [CrossRef] [Green Version]
- Skucha-Nowak, M.; Mertas, A.; Tanasiewicz, M. Using an Electron Scanning Microscope to Assess the Penetrating Abilities of an Experimental Preparation with Features of a Dental infiltrant: Preliminary Study. Adv. Clin. Exp. Med. 2016, 25, 1293–1301. [Google Scholar] [CrossRef]
- Lofmark, S.; Edlund, C.; Nord, C.E. Metronidazole Is Still the Drug of Choice for Treatment of Anaerobic Infections. Clin. Infect. Dis. 2010, 50, 16–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toskic-Radojicic, M.; Nonkovic, Z.; Loncar, I.; Varjacic, M. Effects of topical application of metronidazole—Containing mucoadhesive lipogel in periodontal pockets. Vojn. Pregl. 2005, 62, 565–568. [Google Scholar] [CrossRef]
- Mombelli, A.; Samaranayake, L.P. Topical and systemic antibiotics in the management of periodontal diseases. Int. Dent. J. 2004, 54, 3–14. [Google Scholar] [CrossRef]
- Sender-Janeczek, M.; Ziętek, M. Use of Locally Delivered Antiseptics and Antibiotics in the Treatment of Chronic Periodontitis—Review of Literature. Dent. Med. Probl. 2007, 44, 396–402. [Google Scholar]
- Kida, D.; Pluta, J. The effect of selected hydrophilisers on metronidazole release from hydrogels stomatological dressings on the basis of Carbopol 971. Polim. W Med. 2010, 40, 3–9. [Google Scholar]
- Zhang, K.; Wang, S.; Zhou, X. Effect of Antibacterial Dental Adhesive on Multispecies Biofilms Formation. J. Dent. Res. 2015, 94, 622–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chałas, R.; Wójcik-Chęcińska, I.; Woźniak, M.J.; Grzonka, J.; Święszkowski, W.; Kurzydłowski, K.J. Dental plaque as a biofilm—A risk in oral cavity and methods to prevent. Postępy Hig. Med. Dosw. 2015, 69, 1140–1148. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Tonin, B.S.H. Characterization of a new dental resin composite containing nano-MgO. Dent. Mater. 2019, 35, 22. [Google Scholar] [CrossRef]
- Chieruzzi, M.; Pagano, S.; Lombardo, G.; Marinucci, L.; Kenny, J.M.; Torre, L.; Cianetti, S. Effect of nanohydroxyapatite, antibiotic, and mucosal defensive agent on the mechanical and thermal properties of glass ionomer cements for special needs patients. J. Mater. Res. 2018, 33, 638–649. [Google Scholar] [CrossRef]
- Khosravani, M.R. Mechanical behavior of restorative dental composites under various loading conditions. J. Mech Behav Biomed. Mater. 2019, 93, 151–157. [Google Scholar] [CrossRef]
- Radziejewska, M. Cytotoxicity of composite resin and dentine adhesive systems—A literaturę review. Nowa Stomatol. 1999, 4, 35–39. [Google Scholar]
- Albamonte Araújo, G.S.; Sfalcin, R.A.; Freire Araújo, T.G.; Bruschi Alonso, R.C.; Puppin-Rontanic, M.R. Evaluation of polymerization characteristics and penetration into enamel caries lesions of experimental infiltrants. J. Dent. 2013, 41, 1014–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inamitsu, H.; Okamoto, K.; Sakai, E.; Nishishita, K.; Murata, H.; Tsukuba, T. The dental resin monomers HEMA and TEGDMA have inhibitory effects on osteoclast differentiation with low cytotoxicity. J. Appl. Toxicol. 2017, 37, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Oncel Torun, Z.; Torun, D.; Baykal, B.; Oztuna, A.; Yesildal, F.; Avcu, F. Effects of triethylene glycol dimethacrylate (TEGDMA) on the odontoclastic differentiation ability of human dental pulp cells. J. Appl. Oral. Sci. 2017, 25, 631–640. [Google Scholar] [CrossRef]
- Yoshii, E. Cytotoxic effects of acrylates and methacrylates: Relationships of monomer structures and cytotoxicity. J. Biomed. Mater. Res. 1997, 37, 517–524. [Google Scholar] [CrossRef]
- Zingler, S.; Matthei, B.; Diercke, K.; Frese, C.; Ludwig, B.; Kohl, A.; Lux, C.J.; Erber, R. Biological evaluation of enamel sealants in an organotypic model of the human gingiva. Dent. Mater. 2014, 30, 1039–1050. [Google Scholar] [CrossRef]
- Golz, L.; Simonis, R.A.; Reichelt, J.; Stark, H.; Frentzen, M.; Allam, J.P.; Probstmeier, R.; Winter, J.; Kraus, D. In vitro biocompatibility of ICON and TEGDMA on human dental pulp stem cells. Dent. Mater. 2016, 32, 1052–1064. [Google Scholar] [CrossRef] [PubMed]
Mean Viability of Cell (%) | |||
---|---|---|---|
Preparation | 2-Fold Dilution | 4-Fold Dilution | |
Experimental preparation | 42.8 ± 10.3 | 46.7 ± 3.1 | * p < 0.05 |
Icon | 42.7 ± 7.8 | 34.2 ± 3.1 | * p < 0.05 |
* p > 0.05 | * p < 0.05 |
Component | Quantity (g) | Content (%) |
---|---|---|
TEGDMA | 3.75 | 75 |
HEMA | 1.25 | 25 |
PMMAn-MTZ * | 0.05 | 1 * |
DMAEMA * | 0.05 | 1 * |
CQ * | 0.025 | 0.5 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fischer, M.; Mertas, A.; Czuba, Z.P.; Skucha-Nowak, M. Study of Cytotoxic Properties of an Experimental Preparation with Features of a Dental Infiltrant. Materials 2021, 14, 2442. https://doi.org/10.3390/ma14092442
Fischer M, Mertas A, Czuba ZP, Skucha-Nowak M. Study of Cytotoxic Properties of an Experimental Preparation with Features of a Dental Infiltrant. Materials. 2021; 14(9):2442. https://doi.org/10.3390/ma14092442
Chicago/Turabian StyleFischer, Małgorzata, Anna Mertas, Zenon Paweł Czuba, and Małgorzata Skucha-Nowak. 2021. "Study of Cytotoxic Properties of an Experimental Preparation with Features of a Dental Infiltrant" Materials 14, no. 9: 2442. https://doi.org/10.3390/ma14092442
APA StyleFischer, M., Mertas, A., Czuba, Z. P., & Skucha-Nowak, M. (2021). Study of Cytotoxic Properties of an Experimental Preparation with Features of a Dental Infiltrant. Materials, 14(9), 2442. https://doi.org/10.3390/ma14092442