Materials and Processes for Schottky Contacts on Silicon Carbide
Abstract
:1. Introduction
2. Schottky Contacts to n-Type 4H-SiC
2.1. Fundamentals on Schottky Barriers
2.2. Survey of Literature Data on Schottky Contacts to n-Type 4H-SiC
2.3. Diode Layout
2.4. Low Work Function and Refractory Metals
3. Unconventional Approaches for the Control of 4H-SiC Schottky Interfaces
3.1. Manipulation of the Schottky Interface
3.2. N-Type Doping of the Interface
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ren, F.; Zopler, J.C. Wide Band Gap Electronic Devices; World Scientific Publishing: Singapore, 2003. [Google Scholar]
- Roccaforte, F.; Fiorenza, P.; Greco, G.; Nigro, R.L.; Giannazzo, F.; Iucolano, F.; Saggio, M. Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices. Microelectron. Eng. 2018, 187–188, 66–77. [Google Scholar] [CrossRef]
- She, X.; Huang, A.Q.; Lucia, O.; Ozpineci, B. Review of Silicon Carbide Power Devices and Their Applications. IEEE Trans. Ind. Electron. 2017, 64, 8193–8205. [Google Scholar] [CrossRef]
- Kimoto, T.; Cooper, J.A. Fundamentals of Silicon Carbide Technology; John Wiley & Sons: Singapore, 2014; p. 20. [Google Scholar]
- Kimoto, T. Material science and device physics in SiC technology for high-voltage power devices. Jpn. J. Appl. Phys. 2015, 54, 040103. [Google Scholar] [CrossRef]
- STMicroelectronics. Silicon-Carbide—STPower SiC MOSFETs and SiC Diodes, Industrial and Automotive-STMicroelectronics. Available online: https://www.st.com/en/sic-devices.html (accessed on 9 April 2021).
- Wolfspeed. Power Products. Available online: https://www.wolfspeed.com/power/products (accessed on 9 April 2021).
- ROHM Co., Ltd. Silicon-Carbide (SiC) Power Devices. Discrete Semiconductors. ROHM Semiconductor-ROHM Co., Ltd. Available online: https://www.rohm.com/products/sic-power-devices (accessed on 9 April 2021).
- Roccaforte, F.; Brezeanu, G.; Gammon, P.M.; Giannazzo, F.; Rascunà, S.; Saggio, M. Schottky contacts to silicon carbide: Physics, technology and applications. In Advancing Silicon Carbide Electronics Technology I; Zekentes, K., Vasilevskiy, K., Eds.; Materials Research Foundations LLC: Millersville, PA, USA, 2018; Volume 37, pp. 127–190. [Google Scholar]
- Schottky, W. Zur Halbleitertheorie der Sperrschicht- und Spitzengleichrichter. Eur. Phys. J. A 1939, 113, 367–414. [Google Scholar] [CrossRef]
- Mott, N.F. The theory of crystal rectifiers. Proc. R. Soc. A 1939, 171, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Sze, S.M.; Kwok, K.N. Physics of Semiconductor Devices; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Lide, D.R. (Ed.) Physical Constants of Organic Compounds. In CRC Handbook of Chemistry and Physics; Internet Version 2005; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Davydov, S.Y. On the electron affinity of silicon carbide polytypes. Semiconductors 2007, 41, 696–698. [Google Scholar] [CrossRef]
- Roccaforte, F.; Giannazzo, F.; Iucolano, F.; Eriksson, J.; Weng, M.H.; Raineri, V. Surface and interface issues in wide band gap semiconductor electronics. Appl. Surf. Sci. 2010, 256, 5727–5735. [Google Scholar] [CrossRef]
- Badila, M.; Brezeanu, G.; Millan, J.; Godignon, P.; Banu, V. Silicon carbide Schottky and ohmic contact process dependence. Diam. Relat. Mater. 2002, 11, 1258–1262. [Google Scholar] [CrossRef]
- Tung, R.T. Electron transport at metal-semiconductor interfaces: General theory. Phys. Rev. B 1992, 45, 13509–13523. [Google Scholar] [CrossRef]
- Tung, R.T. The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 2014, 1, 011304. [Google Scholar] [CrossRef] [Green Version]
- Hara, M.; Asada, S.; Maeda, T.; Kimoto, T. Forward thermionic field emission transport and significant image force lowering caused by high electric field at metal/heavily-doped SiC Schottky interfaces. Appl. Phys. Express 2020, 13, 041001. [Google Scholar] [CrossRef]
- Yakimova, R.; Hemmingsson, C.; Macmillan, M.F.; Yakimov, T.; Janzén, E. Barrier height determination for n-type 4H-SiC schottky contacts made using various metals. J. Electron. Mater. 1998, 27, 871–875. [Google Scholar] [CrossRef]
- Werner, J.H.; Güttler, H.H. Barrier inhomogeneities at Schottky contacts. J. Appl. Phys. 1991, 69, 1522–1533. [Google Scholar] [CrossRef]
- Schroder, D.K. Semiconductor Material and Device Characterization; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Roccaforte, F.; La Via, F.; Raineri, V.; Pierobon, R.; Zanoni, E. Richardson’s constant in inhomogeneous silicon carbide Schottky contacts. J. Appl. Phys. 2003, 93, 9137–9144. [Google Scholar] [CrossRef]
- Roccaforte, F.; La Via, F.; Raineri, V. Ohmic contacts to sic. Int. J. High Speed Electron. Syst. 2005, 15, 781–820. [Google Scholar] [CrossRef]
- Padovani, F.A.; Stratton, R. Field and thermionic-field emission in Schottky barriers. Solid-State Electron. 1966, 9, 695–707. [Google Scholar] [CrossRef]
- Pensl, G.; Ciobanu, F.; Frank, M.; Krieger, M.; Reshanov, S.; Schmid, F.; Weidner, M. SiC-Materials and Devices. In Selected Topics in Electronics and Systems; Shur, M., Rumyantsev, S., Levinshtein, M., Eds.; World Scientific Publishing: Singapore, 2006; Volume 40, pp. 1–41. [Google Scholar]
- Itoh, A.; Kimoto, T.; Matsunami, H. High performance of high-voltage 4H-SiC Schottky barrier diodes. IEEE Electron. Device Lett. 1995, 16, 280–282. [Google Scholar] [CrossRef]
- Park, J.S.; Landry, K.; Perepezko, J. Kinetic control of silicon carbide/metal reactions. Mater. Sci. Eng. A Struct. 1999, 259, 279–286. [Google Scholar] [CrossRef]
- Perrone, D.; Naretto, M.; Ferrero, S.; Scaltrito, L.; Pirri, C.F. 4H-SiC Schottky Barrier Diodes Using Mo-, Ti- and Ni-Based Contacts. Mater. Sci. Forum 2009, 615–617, 647–650. [Google Scholar] [CrossRef]
- Lee, S.-K.; Zetterling, C.-M.; Ostling, M. Schottky diode formation and characterization of titanium tungsten to n- and p-type 4H silicon carbide. J. Appl. Phys. 2000, 87, 8039–8044. [Google Scholar] [CrossRef]
- Ramesha, C.K.; Reddy, V.R. Influence of annealing temperature on the electrical and structural properties of palladium Schottky contacts on n-type 4H–SiC. Superlattices Microstruct. 2014, 76, 55–65. [Google Scholar] [CrossRef]
- Huang, L.; Wang, D. Temperature dependent electrical characteristics of Pt Schottky barriers fabricated on lightly and highly doped n-type 4H-SiC. Jpn. J. Appl. Phys. 2015, 54, 114101. [Google Scholar] [CrossRef]
- Gora, V.E.; Chawanda, A.; Nyamhere, C.; Auret, F.D.; Mazunga, F.; Jaure, T.; Chibaya, B.; Omotoso, E.; Danga, H.T.; Tunhuma, S.M. Comparison of nickel, cobalt, palladium, and tungsten Schottky contacts on n-4 H -silicon carbide. Phys. B Condens. Matter 2018, 535, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.J.; Han, S.Y.; Lee, J.-L. Degradation mechanism of Schottky diodes on inductively coupled plasma-etched n-type 4H-SiC. J. Appl. Phys. 2003, 94, 1765–1768. [Google Scholar] [CrossRef] [Green Version]
- Oder, T.N.; Kundeti, K.C.; Borucki, N.; Isukapati, S.B. Effects of deposition temperature on the electrical properties of Ti/SiC Schottky barrier diodes. AIP Adv. 2017, 7, 125311. [Google Scholar] [CrossRef] [Green Version]
- Itoh, A.; Matsunami, H. Analysis of Schottky Barrier Heights of Metal/SiC Contacts and Its Possible Application to High-Voltage Rectifying Devices. Phys. Status Solidi 1997, 162, 389–408. [Google Scholar] [CrossRef]
- Nakamura, T.; Miyanagi, T.; Kamata, I.; Jikimoto, T.; Tsuchida, H. A 4.15 kV 9.07-Ω cm2 4H-SiC Schottky-barrier diode using Mo contact annealed at high temperature. IEEE Electron. Device Lett. 2005, 26, 99–101. [Google Scholar] [CrossRef]
- Kang, I.-H.; Kim, S.-C.; Moon, J.-H.; Bahng, W.; Kim, N.-K. Fabrication of a 600-V/20-A 4H-SiC schottky barrier diode. J. Korean Phys. Soc. 2014, 64, 1886–1891. [Google Scholar] [CrossRef] [Green Version]
- Vivona, M.; Bellocchi, G.; Nigro, R.L.; Rascuna, S.; Roccaforte, F. Electrical evolution of W and WC Schottky contacts on 4H-SiC at different annealing temperatures. Semicond. Sci. Technol. 2022, 37, 015012. [Google Scholar] [CrossRef]
- Toumi, S.; Ouennoughi, Z.; Weiss, R. Temperature analysis of the Gaussian distribution modeling the barrier height inhomogeneity in the Tungsten/4H-SiC Schottky diode. Appl. Phys. A 2021, 127, 1–8. [Google Scholar] [CrossRef]
- Hong, J.; Kim, K.H.; Kim, K.H. Rectifying Characteristics of Thermally Treated Mo/SiC Schottky Contact. Coatings 2019, 9, 388. [Google Scholar] [CrossRef] [Green Version]
- Kwietniewski, N.; Sochacki, M.; Szmidt, J.; Guziewicz, M.; Kaminska, E.; Piotrowska, A. Influence of surface cleaning effects on properties of Schottky diodes on 4H–SiC. Appl. Surf. Sci. 2008, 254, 8106–8110. [Google Scholar] [CrossRef]
- Saxena, V.; Su, J.N.; Steckl, A.J. High-voltage Ni- and Pt-SiC Schottky diodes utilizing metal field plate termination. IEEE Trans. Electron. Devices 1999, 46, 456–464. [Google Scholar] [CrossRef] [Green Version]
- Shalish, I.; De Oliveira, C.E.M.; Shapira, Y.; Burstein, L.; Eizenberg, M. Thermal stability of Pt Schottky contacts to 4H–SiC. J. Appl. Phys. 2000, 88, 5724–5728. [Google Scholar] [CrossRef] [Green Version]
- Schlüter, M. Chemical trends in metal-semiconductor barrier heights. Phys. Rev. B 1978, 17, 5044–5047. [Google Scholar] [CrossRef]
- Mönch, W. Silicon Carbide: Recent Major Advances; Choyke, W.J., Matsunami, H., Pensl, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Roccaforte, F.; Vivona, M.; Greco, G.; Nigro, R.L.; Giannazzo, F.; Rascunà, S.; Saggio, M. Metal/Semiconductor Contacts to Silicon Carbide: Physics and Technology. Mater. Sci. Forum 2018, 924, 339–344. [Google Scholar] [CrossRef]
- Rupp, R.; Elpelt, R.; Gerlach, R.; Schomer, R.; Draghici, M. A new SiC diode with significantly reduced threshold voltage. In Proceedings of the 2017 29th International Symposium on Power Semiconductor Devices and IC’s (ISPSD), Sapporo, Japan, 28 May–1 June 2017; pp. 355–358. [Google Scholar] [CrossRef]
- Pristavu, G.; Brezeanu, G.; Pascu, R.; Drăghici, F.; Bădilă, M. Characterization of non-uniform Ni/4H-SiC Schottky diodes for improved responsivity in high-temperature sensing. Mater. Sci. Semicond. Process. 2019, 94, 64–69. [Google Scholar] [CrossRef]
- Sciuto, A.; Roccaforte, F.; Raineri, V. Electro-optical response of ion-irradiated 4H-SiC Schottky ultraviolet photodetectors. Appl. Phys. Lett. 2008, 92, 093505. [Google Scholar] [CrossRef]
- Sciuto, A.; Roccaforte, F.; Di Franco, S.; Raineri, V.; Billotta, S.; Bonanno, G. Photocurrent gain in 4H-SiC interdigit Schottky UV detectors with a thermally grown oxide layer. Appl. Phys. Lett. 2007, 90, 223507. [Google Scholar] [CrossRef]
- Morisette, D.T.; Cooper, J.A., Jr. Theoretical comparison of SiC PiN and Schottky diodes based on power dissipation considerations. IEEE Trans. Electron. Devices 2002, 49, 1657–1664. [Google Scholar] [CrossRef]
- Baliga, J.B. Modern Power Devices, 1st ed.; Wiley-Interscience: New York, NY, USA, 1987. [Google Scholar]
- Mehrotra, M.; Baliga, B.J. Trench MOS Barrier Schottky (TMBS) rectifier: A Schottky rectifier with higher than parallel plane breakdown voltage. Solid-State Electron. 1995, 38, 801–806. [Google Scholar] [CrossRef]
- Zhang, Q.; Madangarli, V.; Sudarshan, T. SiC planar MOS-Schottky diode: A high voltage Schottky diode with low leakage current. Solid-State Electron. 2001, 45, 1085–1089. [Google Scholar] [CrossRef]
- Schoen, K.J.; Henning, J.P.; Woodall, J.M.; Coopern, J.A., Jr.; Melloch, M.R. A Dual-Metal-Trench Schottky Pinch-Rectifier in 4H-SiC. IEEE Electron. Dev. Lett. 1998, 19, 97. [Google Scholar] [CrossRef]
- Roccaforte, F.; La Via, F.; La Magna, A.; Di Franco, S.; Raineri, V. Silicon carbide pinch rectifiers using a dual-metal Ti-Ni/sub 2/Si Schottky barrier. IEEE Trans. Electron. Devices 2003, 50, 1741–1747. [Google Scholar] [CrossRef]
- Perez, R.; Mestres, N.; Vellvehi, M.; Godignon, P.; Millan, J. Analysis of 1.2 kV JBS rectifiers fabricated in 4H-SiC. Semicond. Sci. Technol. 2006, 21, 670–676. [Google Scholar] [CrossRef]
- Singh, R.; Capell, D.C.; Hefner, A.R.; Lai, J.; Palmour, J.W. High-power 4H-SiC JBS rectifiers. IEEE Trans. Electron. Devices 2002, 49, 2054–2063. [Google Scholar] [CrossRef] [Green Version]
- Dahlquist, F.; Lendenmann, H.; Östling, M. A High Performance JBS Rectifier—Design Considerations. Mater. Sci. Forum 2001, 353–356, 683–686. [Google Scholar] [CrossRef]
- Baliga, B.J. Silicon Carbide Power Devices; World Scientific Publishing: Singapore, 2005. [Google Scholar]
- Berthou, M.; Godignon, P.; Montserrat, J.M.; Millan, J.D.R.; Planson, D. Study of 4H-SiC JBS Diodes Fabricated with Tungsten Schottky Barrier. J. Electron. Mater. 2011, 40, 2355–2362. [Google Scholar] [CrossRef]
- Renz, A.B.; Shah, V.A.; Vavasour, O.J.; Bonyadi, Y.; Li, F.; Dai, T.; Baker, G.W.C.; Hindmarsh, S.; Han, Y.; Walker, M.; et al. The improvement of Mo/4H-SiC Schottky diodes via a P2O5 surface passivation treatment. J. Appl. Phys. 2020, 127, 025704. [Google Scholar] [CrossRef] [Green Version]
- Zaman, M.Y.; Perrone, D.; Ferrero, S.; Scaltrito, L.; Naretto, M. Barrier Inhomogeneities of a Medium Size Mo/4H-SiC Schottky Diode. Mater. Sci. Forum 2012, 711, 188–192. [Google Scholar] [CrossRef]
- Ouennoughi, Z.; Toumi, S.; Weiss, R. Study of barrier inhomogeneities using I–V–T characteristics of Mo/4H–SiC Schottky diode. Phys. B Condens. Matter 2015, 456, 176–181. [Google Scholar] [CrossRef]
- Zhang, T.; Raynaud, C.; Planson, D. Measure and analysis of 4H-SiC Schottky barrier height with Mo contacts. Eur. Phys. J. Appl. Phys. 2019, 85, 10102. [Google Scholar] [CrossRef]
- Zeghdar, K.; Dehimi, L.; Pezzimenti, F.; Megherbi, M.L.; Della Corte, F.G. Analysis of the Electrical Characteristics of Mo/4H-SiC Schottky Barrier Diodes for Temperature-Sensing Applications. J. Electron. Mater. 2020, 49, 1322–1329. [Google Scholar] [CrossRef]
- Okamoto, D.; Yano, H.; Hirata, K.; Hatayama, T.; Fuyuki, T. Improved Inversion Channel Mobility in 4H-SiC MOSFETs on Si Face Utilizing Phosphorus-Doped Gate Oxide. IEEE Electron Device Lett. 2010, 31, 710–712. [Google Scholar] [CrossRef]
- Fiorenza, P.; Swanson, L.K.; Vivona, M.; Giannazzo, F.; Bongiorno, C.; Frazzetto, A.; Roccaforte, F. Comparative study of gate oxide in 4H-SiC lateral MOSFETs subjected to post-deposition-annealing in N2O and POCl3. Appl. Phys. A 2014, 115, 333–339. [Google Scholar] [CrossRef]
- Sharma, Y.K.; Ahyi, A.C.; Issacs-Smith, T.; Shen, X.; Pantelides, S.B.; Zhu, X.; Feldman, L.C.; Rozen, J.; Williams, J.R. Phosphorous passivation of the SiO2/4H–SiC interface. Solid-State Electron. 2012, 68, 103–107. [Google Scholar] [CrossRef]
- Katsuno, T.; Watanabe, Y.; Fujiwara, H.; Konishi, M.; Naruoka, H.; Morimoto, J.; Morino, T.; Endo, T. Analysis of surface morphology at leakage current sources of 4H–SiC Schottky barrier diodes. Appl. Phys. Lett. 2011, 98, 222111. [Google Scholar] [CrossRef]
- Stober, L.; Konrath, J.P.; Patocka, F.; Schneider, M.; Schmid, U. Controlling 4H–SiC Schottky Barriers by Molybdenum and Molybdenum Nitride as Contact Materials. IEEE Trans. Electron. Devices 2016, 63, 578–583. [Google Scholar] [CrossRef]
- Hamida, A.F.; Ouennoughi, Z.; Sellai, A.; Weiss, R.; Ryssel, H. Barrier inhomogeneities of tungsten Schottky diodes on 4H-SiC. Semicond. Sci. Technol. 2008, 23, 045005. [Google Scholar] [CrossRef]
- Toumi, S.; Ferhat-Hamida, A.; Boussouar, L.; Sellai, A.; Ouennoughi, Z.; Ryssel, H. Gaussian distribution of inhomogeneous barrier height in tungsten/4H-SiC (000-1) Schottky diodes. Microelectron. Eng. 2009, 86, 303–309. [Google Scholar] [CrossRef]
- Suzuki, T.; Wakabayashi, H.; Tsutsui, K.; Iwai, H.; Kakushima, K. Laminated Mo/C Electrodes for 4H-SiC Schottky Barrier Diodes with Ideal Interface Characteristics. IEEE Electron. Device Lett. 2016, 37, 618–620. [Google Scholar] [CrossRef]
- Knoll, L.; Teodorescu, V.; Minamisawa, R.A. Ultra-Thin Epitaxial Tungsten Carbide Schottky Contacts in 4H-SiC. IEEE Electron. Device Lett. 2016, 37, 1318–1320. [Google Scholar] [CrossRef]
- Chen, K.-H.; Cao, F.; Yang, Z.-Y.; Li, X.-J.; Yang, J.-Q.; Shi, D.-K.; Wang, Y. Improved interface characteristics of Mo/4H-SiC schottky contact. Solid-State Electron. 2021, 185, 108152. [Google Scholar] [CrossRef]
- Vivona, M.; Greco, G.; Bellocchi, G.; Zumbo, L.; Di Franco, S.; Saggio, M.; Rascunà, S.; Roccaforte, F. Electrical properties of inhomogeneous tungsten carbide Schottky barrier on 4H-SiC. J. Phys. D Appl. Phys. 2021, 54, 055101. [Google Scholar] [CrossRef]
- Bellocchi, G.; Vivona, M.; Bongiorno, C.; Badalà, P.; Bassi, A.; Rascuna, S.; Roccaforte, F. Barrier height tuning in Ti/4H-SiC Schottky diodes. Solid-State Electron. 2021, 186, 108042. [Google Scholar] [CrossRef]
- Lee, S.-K.; Zetterling, C.-M.; Östling, M.; Åberg, I.; Magnusson, M.H.; Deppert, K.; Wernersson, L.-E.; Samuelson, L.; Litwin, A. Reduction of the Schottky barrier height on silicon carbide using Au nano-particles. Solid-State Electron. 2002, 46, 1433–1440. [Google Scholar] [CrossRef]
- Ruffino, F.; Crupi, I.; Irrera, A.; Grimaldi, M.G. Pd/Au/SiC Nanostructured Diodes for Nanoelectronics: Room Temperature Electrical Properties. IEEE Trans. Nanotechnol. 2010, 9, 414–421. [Google Scholar] [CrossRef]
- Kang, M.-S.; Ahn, J.-J.; Moon, K.-S.; Koo, S.-M. Metal work-function-dependent barrier height of Ni contacts with metal-embedded nanoparticles to 4H-SiC. Nanoscale Res. Lett. 2012, 7, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorji, M.S.; Cheong, K.Y. Au nanoparticles embedded at the interface of Al/4H-SiC Schottky contacts for current density enhancement. Appl. Phys. A 2015, 118, 315–325. [Google Scholar] [CrossRef]
- Kumta, A.; Rusli; Xia, J.H. Passivation of 4H–SiC Schottky barrier diodes using aluminum based dielectrics. Solid-State Electron. 2009, 53, 204–210. [Google Scholar] [CrossRef]
- Tsui, B.-Y.; Cheng, J.-C.; Lee, L.-S.; Lee, C.-Y.; Tsai, M.-J. Schottky barrier height modification of metal/4H-SiC contact using ultrathin TiO2 insertion method. Jpn. J. Appl. Phys. 2014, 53, 04EP10. [Google Scholar] [CrossRef]
- Shi, D.-K.; Wang, Y.; Wu, X.; Yang, Z.-Y.; Li, X.-J.; Yang, J.-Q.; Cao, F. Improving the barrier inhomogeneity of 4H-SiC Schottky diodes by inserting Al2O3 interface layer. Solid-State Electron. 2021, 180, 107992. [Google Scholar] [CrossRef]
- Triendl, F.; Pfusterschmied, G.; Berger, C.; Schwarz, S.; Artner, W.; Schmid, U. Ti/4H-SiC schottky barrier modulation by ultrathin a-SiC:H interface layer. Thin Solid Films 2021, 721, 138539. [Google Scholar] [CrossRef]
- Defives, D.; Durand, O.; Wyczisk, F.; Olivier, J.; Noblanc, O.; Brylinski, C. Thermal Annealing Effect on TiN/Ti Layers on 4H-SiC: Metal-Semiconductor Interface Characterization. Mater. Sci. Forum 2000, 338–342, 411–414. [Google Scholar] [CrossRef]
- Giannazzo, F.; Deretzis, I.; Nicotra, G.; Fisichella, G.; Ramasse, Q.M.; Spinella, C.; Roccaforte, F.; La Magna, A. High resolution study of structural and electronic properties of epitaxial graphene grown on off-axis 4H–SiC (0001). J. Cryst. Growth 2014, 393, 150–155. [Google Scholar] [CrossRef]
- Giannazzo, F.; Hertel, S.; Albert, A.; Fisichella, G.; La Magna, A.; Roccaforte, F.; Krieger, M.; Weber, H.B. Electrical Properties of Hydrogen Intercalated Epitaxial Graphene/SiC Interface Investigated by Nanoscale Current Mapping. Mater. Sci. Forum 2015, 821–823, 929–932. [Google Scholar] [CrossRef]
- Varchon, F.; Feng, R.; Hass, J.; Li, X.; Nguyen, B.N.; Naud, C.; Mallet, P.; Veuillen, J.-Y.; Berger, C.; Conrad, E.H.; et al. Electronic Structure of Epitaxial Graphene Layers on SiC: Effect of the Substrate. Phys. Rev. Lett. 2007, 99, 126805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonde, S.; Giannazzo, F.; Raineri, V.; Yakimova, R.; Huntzinger, J.-R.; Tiberj, A.; Camassel, J. Electrical properties of the graphene/4H-SiC(0001) interface probed by scanning current spectroscopy. Phys. Rev. B 2009, 80, 241406. [Google Scholar] [CrossRef]
- Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A.A.; Starke, U. Quasi-Free-Standing Epitaxial Graphene on SiC Obtained by Hydrogen Intercalation. Phys. Rev. Lett. 2009, 103, 246804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hertel, S.; Waldmann, D.; Jobst, J.; Albert, A.; Albrecht, M.; Reshanov, S.; Schöner, A.; Krieger, M.; Weber, H.B. Tailoring the graphene/silicon carbide interface for monolithic wafer-scale electronics. Nat. Commun. 2012, 3, 957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Z.; Ji, L.; Wu, Y.; Hu, L.; Yan, T.; Sun, Z. Laser-induced interfacial state changes enable tuning of the Schottky-barrier height in SiC. Appl. Surf. Sci. 2019, 469, 68–75. [Google Scholar] [CrossRef]
- Treu, M.; Rupp, R.; Kapels, H.; Bartsch, W. Temperature Dependence of Forward and Reverse Characteristics of Ti, W, Ta and Ni Schottky Diodes on 4H-SiC. Mater. Sci. Forum 2001, 353–356, 679–682. [Google Scholar] [CrossRef]
- Hatakeyama, T.; Shinohe, T. Reverse Characteristics of a 4H-SiC Schottky Barrier Diode. Mater. Sci. Forum 2002, 389–393, 1169–1172. [Google Scholar] [CrossRef]
- Roccaforte, F.; Libertino, S.; Giannazzo, F.; Bongiorno, C.; La Via, F.; Raineri, V. Ion irradiation of inhomogeneous Schottky barriers on silicon carbide. J. Appl. Phys. 2005, 97, 123502. [Google Scholar] [CrossRef]
- Hara, M.; Kaneko, M.; Kimoto, T. Nearly Fermi-level-pinning-free interface in metal/heavily-doped SiC Schottky structures. Jpn. J. Appl. Phys. 2021, 60, SBBD14. [Google Scholar] [CrossRef]
- Vivona, M.; Greco, G.; Spera, M.; Fiorenza, P.; Giannazzo, F.; La Magna, A.; Roccaforte, F. Ni Schottky barrier on heavily doped phosphorous implanted 4H-SiC. J. Phys. D Appl. Phys. 2021, 54, 445107. [Google Scholar] [CrossRef]
Metal | ϕB (eV) | Thermal Treatment | Reference |
---|---|---|---|
Ta | 1.10 | none | [34] |
Ti | 0.95 | none | [35,36] |
Ti | 0.78 | none | [37] |
Ti | 0.96 | none | [38] |
Ti | 1.15 | 600 °C for 10 min in Ar | [37] |
Ti | 0.95 | 500 °C for 60 h in vacuum | [35] |
W | 1.11 | none | [39] |
W | 1.14–1.25 | 475–700 °C for 10 min in N2 | [39] |
W | 1.17 | none | [37] |
W | 1.09 | 600 °C for 10 min in Ar | [37] |
W | 1.11 | 500 °C in N2 | [40] |
Mo | 1.04 | none | [29] |
Mo | 1.11 | none | [37] |
Mo | 1.21 | 600 °C for 10 min in Ar | [37] |
Mo | 1.17 | none | [41] |
Mo | 1.01 | 400 °C for 30 min in Ar | [41] |
Ni | 1.45 | none | [29] |
Ni | 1.62 | none | [27] |
Ni | 1.52 | none | [38] |
Ni | 1.52 | 400 °C, RTA | [29] |
Au | 1.73 | none | [27] |
Ir | 1.31 | none | [42] |
Pt | 1.39 | none | [43] |
Pt | 1.72 | 200 °C | [44] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vivona, M.; Giannazzo, F.; Roccaforte, F. Materials and Processes for Schottky Contacts on Silicon Carbide. Materials 2022, 15, 298. https://doi.org/10.3390/ma15010298
Vivona M, Giannazzo F, Roccaforte F. Materials and Processes for Schottky Contacts on Silicon Carbide. Materials. 2022; 15(1):298. https://doi.org/10.3390/ma15010298
Chicago/Turabian StyleVivona, Marilena, Filippo Giannazzo, and Fabrizio Roccaforte. 2022. "Materials and Processes for Schottky Contacts on Silicon Carbide" Materials 15, no. 1: 298. https://doi.org/10.3390/ma15010298
APA StyleVivona, M., Giannazzo, F., & Roccaforte, F. (2022). Materials and Processes for Schottky Contacts on Silicon Carbide. Materials, 15(1), 298. https://doi.org/10.3390/ma15010298