Low-Frequency Bandgaps of the Lightweight Single-Phase Acoustic Metamaterials with Locally Resonant Archimedean Spirals
Abstract
:1. Introduction
2. Mechanical Design and FE Modeling of the SHAMLRAS
2.1. Mechanical Design
2.2. FE Modeling for the Free Wave Propagation
3. Bandgap and Directional Propagation Characteristics of Elastic Waves for the SHAMLRAS
3.1. Bandgap Characteristics
3.2. Dispersion Surfaces
3.3. Directional Propagation Property of Elastic Waves
4. Influence of the SHAMLRAS Bandgap
4.1. Influence of Spiral Geometry on the Bandgap
4.2. Influence of Spiral Arrangement on the Bandgap
4.3. Influence of Material Parameters on the Bandgap
5. Filtering Properties of the Finite Periodic Structure of the SHAMLRAS
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Liu, H.-T. 3D compression–torsion cubic mechanical metamaterial with double inclined rods. Extrem. Mech. Lett. 2020, 37, 100706. [Google Scholar] [CrossRef]
- Fok, L.; Ambati, M.; Zhang, X. Acoustic Metamaterials. MRS Bull. 2008, 33, 931–934. [Google Scholar] [CrossRef]
- Cummer, S.A.; Christensen, J.; Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 2016, 1, 16001. [Google Scholar] [CrossRef] [Green Version]
- Ye, M.; Gao, L.; Li, H. A design framework for gradually stiffer mechanical metamaterial induced by negative Poisson’s ratio property. Mater. Des. 2020, 192, 108751. [Google Scholar] [CrossRef]
- Sun, Y.; Pugno, N.M. In plane stiffness of multifunctional hierarchical honeycombs with negative Poisson’s ratio sub-structures. Compos. Struct. 2013, 106, 681–689. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Wang, B.; Pugno, N.; Wang, B.; Ding, Q. In-plane stiffness of the anisotropic multifunctional hierarchical honeycombs. Compos. Struct. 2015, 131, 616–624. [Google Scholar] [CrossRef]
- Hu, G.; Tang, L.; Das, R.; Gao, S.; Liu, H. Acoustic metamaterials with coupled local resonators for broadband vibration suppression. AIP Adv. 2017, 7, 025211. [Google Scholar] [CrossRef] [Green Version]
- Koh, C.Y.; Jorba, D.A.; Thomas, E.L. Phononic Metamaterials for Vibration Isolation and Focusing of Elastic Waves. U.S. Patent 8,833,510, 16 September 2014. [Google Scholar]
- Wang, Y.-F.; Wang, Y.-S.; Wang, L. Two-dimensional ternary locally resonant phononic crystals with a comblike coating. J. Phys. D Appl. Phys. 2013, 47, 015502. [Google Scholar] [CrossRef]
- Chiang, T.-Y.; Wu, L.-Y.; Tsai, C.-N.; Chen, L.-W. A multilayered acoustic hyperlens with acoustic metamaterials. Appl. Phys. A 2011, 103, 355–359. [Google Scholar] [CrossRef]
- Oh, J.H.; Seung, H.M.; Kim, Y.Y. Doubly negative isotropic elastic metamaterial for sub-wavelength focusing: Design and realization. J. Sound Vib. 2017, 410, 169–186. [Google Scholar] [CrossRef]
- Lu, M.-H.; Zhang, C.; Feng, L.; Zhao, J.; Chen, Y.-F.; Mao, Y.-W.; Zi, J.; Zhu, Y.-Y.; Zhu, S.-N.; Ming, N.-B. Negative birefraction of acoustic waves in a sonic crystal. Nat. Mater. 2007, 6, 744–748. [Google Scholar] [CrossRef]
- Cummer, S.A.; Schurig, D. One path to acoustic cloaking. New J. Phys. 2007, 9, 45. [Google Scholar] [CrossRef]
- Zigoneanu, L.; Popa, B.-I.; Cummer, S.A. Three-dimensional broadband omnidirectional acoustic ground cloak. Nat. Mater. 2014, 13, 352–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kushwaha, M.S.; Halevi, P.; Dobrzynski, L.; Djafari-Rouhani, B. Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 1993, 71, 2022–2025. [Google Scholar] [CrossRef] [PubMed]
- Sigalas, M.M.; Economou, E.N. Elastic and acoustic wave band structure. J. Sound Vib. 1992, 158, 377–382. [Google Scholar] [CrossRef]
- Brillouin, L. Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices; Dover Publications: Mineola, NY, USA, 2003; Volume 2. [Google Scholar]
- Javid, F.; Wang, P.; Shanian, A.; Bertoldi, K. Architected Materials with Ultra-Low Porosity for Vibration Control. Adv. Mater. 2016, 28, 5943–5948. [Google Scholar] [CrossRef]
- Norton, M.P.; Karczub, D.G. Fundamentals of Noise and Vibration Analysis for Engineers; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Zhang, H.; Wen, J.; Xiao, Y.; Wang, G.; Wen, X. Sound transmission loss of metamaterial thin plates with periodic subwavelength arrays of shunted piezoelectric patches. J. Sound Vib. 2015, 343, 104–120. [Google Scholar] [CrossRef]
- Vaziri, A.; Hutchinson, J.W. Metal sandwich plates subject to intense air shocks. Int. J. Solids Struct. 2007, 44, 2021–2035. [Google Scholar] [CrossRef] [Green Version]
- Lestari, W.; Qiao, P. Dynamic Characteristics and Effective Stiffness Properties of Honeycomb Composite Sandwich Structures for Highway Bridge Applications. J. Compos. Constr. 2006, 10, 148–160. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, X.; Mao, Y.; Zhu, Y.Y.; Yang, Z.; Chan, C.T.; Sheng, P. Locally Resonant Sonic Materials. Science 2000, 289, 1734–1736. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Xiaoyun, H.; Xisen, W. Band-structure results for elastic waves interpreted with multiple-scattering theory. Phys. Rev. B 2006, 74, 153101. [Google Scholar] [CrossRef]
- Dong, Y.; Yao, H.; Du, J.; Zhao, J.; Ding, C. Research on bandgap property of a novel small size multi-band phononic crystal. Phys. Lett. A 2019, 383, 283–288. [Google Scholar] [CrossRef]
- Li, S.; Dou, Y.; Chen, T.; Xu, J.; Li, B.; Zhang, F. Designing a broad locally-resonant bandgap in a phononic crystals. Phys. Lett. A 2019, 383, 1371–1377. [Google Scholar] [CrossRef]
- Ning, S.; Yan, Z.; Chu, D.; Jiang, H.; Liu, Z.; Zhuang, Z. Ultralow-frequency tunable acoustic metamaterials through tuning gauge pressure and gas temperature. Extrem. Mech. Lett. 2021, 44, 101218. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Heer, B. Additive manufacturing of multi-material structures. Mater. Sci. Eng. R Rep. 2018, 129, 1–16. [Google Scholar] [CrossRef]
- Chen, D.; Zheng, X. Multi-material Additive Manufacturing of Metamaterials with Giant, Tailorable Negative Poisson’s Ratios. Sci. Rep. 2018, 8, 9139. [Google Scholar] [CrossRef]
- Abueidda, D.W.; Jasiuk, I.; Sobh, N.A. Acoustic band gaps and elastic stiffness of PMMA cellular solids based on triply periodic minimal surfaces. Mater. Des. 2018, 145, 20–27. [Google Scholar] [CrossRef]
- Warmuth, F.; Wormser, M.; Körner, C. Single phase 3D phononic band gap material. Sci. Rep. 2017, 7, 3843. [Google Scholar] [CrossRef] [Green Version]
- Gao, P.; Climente, A.; Sánchez-Dehesa, J.; Wu, L. Single-phase metamaterial plates for broadband vibration suppression at low frequencies. J. Sound Vib. 2019, 444, 108–126. [Google Scholar] [CrossRef]
- Fei, X.; Jin, L.; Zhang, X.; Li, X.; Lu, M. Three-dimensional anti-chiral auxetic metamaterial with tunable phononic bandgap. Appl. Phys. Lett. 2020, 116, 021902. [Google Scholar] [CrossRef]
- Huang, Y.; Li, J.; Chen, W.; Bao, R. Tunable bandgaps in soft phononic plates with spring-mass-like resonators. Int. J. Mech. Sci. 2019, 151, 300–313. [Google Scholar] [CrossRef]
- Chen, M.; Xu, W.; Liu, Y.; Yan, K.; Jiang, H.; Wang, Y. Band gap and double-negative properties of a star-structured sonic metamaterial. Appl. Acoust. 2018, 139, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Jiang, H.; Zhang, H.; Li, D.; Wang, Y. Design of an acoustic superlens using single-phase metamaterials with a star-shaped lattice structure. Sci. Rep. 2018, 8, 1861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, F.; Wang, L.; Liu, H. Low frequency and broadband vibration attenuation of a novel lightweight bidirectional re-entrant lattice metamaterial. Mater. Lett. 2021, 299, 130133. [Google Scholar] [CrossRef]
- Kumar, N.; Pal, S. Low frequency and wide band gap metamaterial with divergent shaped star units: Numerical and experimental investigations. Appl. Phys. Lett. 2019, 115, 254101. [Google Scholar] [CrossRef]
- Isik, O.; Esselle, K.P. Analysis of spiral metamaterials by use of group theory. Metamaterials 2009, 3, 33–43. [Google Scholar] [CrossRef]
- Qi, D.; Yu, H.; Hu, W.; He, C.; Wu, W.; Ma, Y. Bandgap and wave attenuation mechanisms of innovative reentrant and anti-chiral hybrid auxetic metastructure. Extrem. Mech. Lett. 2019, 28, 58–68. [Google Scholar] [CrossRef]
Boundary Points | Cartesian Basis | Reciprocal Basis |
---|---|---|
O | (0, 0) | (0, 0) |
A | , 0) | (1, 0) |
B | ) | (1, 1) |
Lattice Parameters | Material Parameters of Photosensitive Resin | ||
---|---|---|---|
Radius of tangent circle | R1 = 9.5 mm | Young’s modulus | 2.642 GPa |
Inner diameter | R2 = 2.0 mm | Density | 1150 kg/m3 |
Circle distance | d = 4.25 mm | Poisson’s ratio | 0.42 |
Ligament thickness | p = 1.0 mm | ||
Turn number | n = 2 | ||
Start value | t0 = 0 | ||
End value | t1 = 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, H.; Yan, Q.; Liu, X.; Zhang, Y.; Sun, Y.; Ding, Q.; Wang, L.; Xu, J.; Yan, H. Low-Frequency Bandgaps of the Lightweight Single-Phase Acoustic Metamaterials with Locally Resonant Archimedean Spirals. Materials 2022, 15, 373. https://doi.org/10.3390/ma15010373
Gao H, Yan Q, Liu X, Zhang Y, Sun Y, Ding Q, Wang L, Xu J, Yan H. Low-Frequency Bandgaps of the Lightweight Single-Phase Acoustic Metamaterials with Locally Resonant Archimedean Spirals. Materials. 2022; 15(1):373. https://doi.org/10.3390/ma15010373
Chicago/Turabian StyleGao, Haoqiang, Qun Yan, Xusheng Liu, Ying Zhang, Yongtao Sun, Qian Ding, Liang Wang, Jinxin Xu, and Hao Yan. 2022. "Low-Frequency Bandgaps of the Lightweight Single-Phase Acoustic Metamaterials with Locally Resonant Archimedean Spirals" Materials 15, no. 1: 373. https://doi.org/10.3390/ma15010373
APA StyleGao, H., Yan, Q., Liu, X., Zhang, Y., Sun, Y., Ding, Q., Wang, L., Xu, J., & Yan, H. (2022). Low-Frequency Bandgaps of the Lightweight Single-Phase Acoustic Metamaterials with Locally Resonant Archimedean Spirals. Materials, 15(1), 373. https://doi.org/10.3390/ma15010373