Potential of Soil Stabilization Using Ground Granulated Blast Furnace Slag (GGBFS) and Fly Ash via Geopolymerization Method: A Review
Abstract
:1. Introduction
2. Soil Stabilization by Conventional Method
2.1. Soil Stabilization Using Fly Ash
2.2. Soil Stabilization Using Ground Granulated Blast Furnace Slag (GGBFS)
2.3. Strength of Soils after Stabilization with Fly Ash and Ground Granulated Blast Furnace Slag (GGBFS)
3. Geopolymer
3.1. Source of Raw Materials
3.2. Alkali Activator
3.3. Strength of Soil after Stabilization with Fly Ash and Ground Granulated Blast Furnace Slag (GGBFS) Geopolymer
4. Factors Affecting the Geopolymer Properties
4.1. Effect of Solid to Liquid Ratio on Geopolymer
4.2. Effect of Sodium Hydroxide Molarity on Geopolymer
4.3. Effect of Sodium Silicate to Sodium Hydroxide Ratio on Geopolymer
5. Summary and Future Works
- i.
- Previous research has demonstrated that soil stabilization based on geopolymers using fly ash Class C and GGBFS as raw materials can increase the compressive strength of clayey soil. Thus, it is advised that future works concentrate on using fly ash Class C and GGBFS geopolymers as soil-stabilizing materials.
- ii.
- The mix design of soil stabilization-based geopolymer is critical in defining the mechanical and physical properties of soil stabilization-based geopolymer. Thus, the optimal solid-to-liquid ratio, sodium hydroxide to sodium silicate ratio, and sodium hydroxide molarity must be further researched in relation to soil-stabilizing requirements such as unconfined compressive strength and Atterberg limits test.
- iii.
- The effects of various curing temperature on soil-based geopolymer need to be further investigated.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pandey, A. Soil stabilization using cement. Int. J. Civ. Eng. Technol. 2017, 8, 316–322. [Google Scholar] [CrossRef]
- Pereira, R.S.; Emmert, F.; Miguel, E.P.; Gatto, A. Soil Stabilization with Lime for the Construction of Forest Roads. Floresta E Ambient. 2018, 25. [Google Scholar] [CrossRef] [Green Version]
- Emarah, D.A.; Seleem, S.A. Swelling soils treatment using lime and sea water for roads construction. Alex. Eng. J. 2018, 57, 2357–2365. [Google Scholar] [CrossRef]
- Ural, N. The Importance of Clay in Geotechnical Engineering; Intech: London, UK, 2018; p. 13. [Google Scholar]
- Cherif, M.M.; Amal, M.; Ramdane, B. Effect of swelling mineral on geotechnical characteristics of clayey soil. MATEC Web. Conf. 2018, 149, 02067. [Google Scholar] [CrossRef]
- Seco, A.; Del Castillo, J.M.; Espuelas, S.; Marcelino-Sadaba, S.; Garcia, B. Stabilization of a clayey soil using cementing material from spent refractories and ground-granulated blast furnace slag. Sustainability 2021, 13, 3015. [Google Scholar] [CrossRef]
- Cavalcante, F. Editorial for special issue clays, clay minerals, and geology. Minerals 2021, 11, 1057. [Google Scholar] [CrossRef]
- Soból, E.; Gabryś, K.; Zabłocka, K.; Šadzevičius, R.; Skominas, R.; Sas, W. Laboratory studies of small strain stiffness and modulus degradation of Warsaw mineral cohesive soils. Minerals 2020, 10, 1127. [Google Scholar] [CrossRef]
- Eberwein, J.R.; Oikawa, P.Y.; Allsman, L.A.; Jenerette, G.D. Carbon availability regulates soil respiration response to nitrogen and temperature. Soil Biol. Biochem. 2015, 88, 158–164. [Google Scholar] [CrossRef]
- Davidson, E.A.; Verchot, L.V.; Henrique Cattânio, J.; Ackerman, I.L.; Carvalho, J.E.M. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 2000, 48, 53–69. [Google Scholar] [CrossRef]
- Khan, T.A.; Taha, M.R.; Khan, M.M.; Shah, S.A.R.; Aslam, M.A.; Waqar, A.; Khan, A.R.; Waseem, M. Strength, and volume change characteristics of clayey soils: Performance evaluation of enzymes. Minerals 2020, 10, 52. [Google Scholar] [CrossRef] [Green Version]
- Di Sante, M.; Di Buò, B.; Fratalocchi, E.; Länsivaara, T. Lime treatment of a soft sensitive clay: A sustainable reuse option. Geosciences 2020, 10, 182. [Google Scholar] [CrossRef]
- Vukićević, M.; Marjanović, M.; Pujević, V.; Jocković, S. The alternatives to traditional materials for subsoil stabilization and embankments. Materials 2019, 12, 3018. [Google Scholar] [CrossRef] [Green Version]
- ASTM D 4287. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System); ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- Won, J.; Park, J.; Kim, J.; Jang, J. Impact of Particle Sizes, Mineralogy and Pore Fluid Chemistry on the Plasticity of Clayey Soils. Sustainability 2021, 13, 11741. [Google Scholar] [CrossRef]
- She, J.; Lu, Z.; Yao, H.; Fang, R.; Xian, S. Experimental Study on the Swelling Behavior of Expansive Soil at Different Depths under Unidirectional Seepage. Appl. Sci. 2019, 9, 1233. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, N.; Satyam, N. Experimental study on the influence of polypropylene fiber on the swelling pressure expansion attributes of silica fume stabilized clayey soil. Geosciences 2019, 9, 377. [Google Scholar] [CrossRef] [Green Version]
- Long, Z.; Cheng, Y.; Yang, G.; Yang, D.; Xu, Y. Study on Triaxial Creep Test and Constitutive Model of Compacted Red Clay. Int. J. Civ. Eng. 2021, 19, 517–531. [Google Scholar] [CrossRef]
- Ghadir, P.; Ranjbar, N. Clayey soil stabilization using geopolymer and Portland cement. Constr. Build. Mater. 2018, 188, 361–371. [Google Scholar] [CrossRef]
- Gharib, M.; Saba, H.; Barazesh, A. Experimental Investigation of Impact of Adding Lime on Atterberg Limits in Golestan Province Soils. Mater. Sci. 2012, 3, 796–800. [Google Scholar]
- Bahadori, H.; Hasheminezhad, A.; Taghizadeh, F. Experimental Study on Marl Soil Stabilization Using Natural Pozzolans. J. Mater. Civ. Eng. 2019, 31, 04018363. [Google Scholar] [CrossRef]
- Salehi, M.; Bayat, M.; Saadat, M.; Nasri, M. Experimental Study on Mechanical Properties of Cement-Stabilized Soil Blended with Crushed Stone Waste. KSCE J. Civ. Eng. 2021, 25, 1974–1984. [Google Scholar] [CrossRef]
- Geliga, E.A.; Salma, D.; Ismail, A. Geotechnical Properties of Fly Ash, and its Application on Soft Soil Stabilization. UNIMAS E J. Civ. Eng. 2010, 1, 1–6. [Google Scholar]
- Amhadi, T.S.; Assaf, G.J. Improvement of Pavement Subgrade by Adding Cement and Fly Ash to Natural Desert Sand. Infrastructures 2021, 6, 151. [Google Scholar] [CrossRef]
- Afrin, H. A Review on Different Types Soil Stabilization Techniques. Int. J. Transp. Eng. Technol. 2017, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Lakhanpal, A.; Chopra, A. A Brief Review on Various Methods and Materials Used for. Int. Res. J. Eng. Technol. 2018, 5, 682–684. [Google Scholar]
- Dhakar, S.; Jain, S.K. Stabilization of Soil: A Review. J. Xidian Univ. 2020, 14, 545–549. [Google Scholar] [CrossRef]
- Utami, G.S. Clayey soil stabilization with lime effect the value CBR and swelling. ARPN J. Eng. Appl. Sci. 2014, 9, 1744–1748. [Google Scholar]
- Baloochi, H.; Aponte, D.; Barra, M. Soil stabilization using wastepaper fly ash: Precautions for its correct use. Appl. Sci. 2020, 10, 8750. [Google Scholar] [CrossRef]
- Mishra, S.; Sachdeva, S.N.; Manocha, R. Subgrade Soil Stabilization Using Stone Dust and Coarse Aggregate: A Cost-Effective Approach. Int. J. Geosynth. Gr. Eng. 2019, 5, 40891. [Google Scholar] [CrossRef]
- Sagar Mali, S.K. Soil Stabilization by using Plastic Waste. Int. Res. J. Eng. Technol. 2019, 6, 4056–4060. [Google Scholar]
- Mokhtar, M.; Hamid, N.B.; Nadia Mohd Yusoff, S.A.; Sani, S. An experimental study on dust shell as an admixture in soft soil stabilization. ARPN J. Eng. Appl. Sci. 2016, 11, 7254–7257. [Google Scholar]
- Kharade, A.S. Waste Product Bagasse Ash from Sugar Industry Can Be Used as Stabilizing Material for Expansive Soils. Int. J. Res. Eng. Technol. 2014, 3, 506–512. [Google Scholar] [CrossRef]
- Tavakol, M.; Hossain, M.; Tucker-Kulesza, S.E. Subgrade Soil Stabilization Using Low-Quality Recycled Concrete Aggregate. J. Geotech. 2019, 1, 235–244. [Google Scholar] [CrossRef]
- Behiry, A.E.A.E.-M. Utilization of a New By-Product Material for Soft Subgrade Soil Stabilization. OALib 2014, 1, 1–22. [Google Scholar] [CrossRef]
- Firoozi, A.A.; Guney Olgun, C.; Firoozi, A.A.; Baghini, M.S. Fundamentals of soil stabilization. Int. J. Geo Eng. 2017, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Saneiyan, S.; Ntarlagiannis, D.; Werkema, D.D.; Ustra, A. Geophysical methods for monitoring soil stabilization processes. J. Appl. Geophys. 2018, 148, 234–244. [Google Scholar] [CrossRef]
- Rahgozar, M.A.; Saberian, M.; Li, J. Soil stabilization with non-conventional eco-friendly agricultural waste materials: An experimental study. Transp. Geotech. 2018, 14, 52–60. [Google Scholar] [CrossRef]
- Neeladharan, C. Stabilization of soil using Fly ash with ground granulated blast furnace slag (GGBS) as binder. Suraj Punj. J. 2019, 9, 23. [Google Scholar]
- Amulya, S.; Ravi Shankar, A.U.; Praveen, M. Stabilization of lithomargic clay using alkali activated fly ash and ground granulated blast furnace slag. Int. J. Pavement Eng. 2020, 21, 1114–1121. [Google Scholar] [CrossRef]
- Sihag, P.; Suthar, M.; Mohanty, S. Estimation of UCS-FT of Dispersive Soil Stabilized with Fly Ash, Cement Clinker and GGBS by Artificial Intelligence. Iran. J. Sci. Technol. Trans. Civ. Eng. 2021, 45, 901–912. [Google Scholar] [CrossRef]
- Ghaffoori, F.K.; Arbili, M.M. Effects of Fly Ash and Granulated Ground Blast Furnace Slag on Stabilization of Crude Oil Contamination Sandy Soil. Polytech. J. 2019, 9, 80–85. [Google Scholar] [CrossRef]
- Miraki, H.; Shariatmadari, N.; Ghadir, P.; Jahandari, S.; Tao, Z.; Siddique, R. Clayey soil stabilization using alkali-activated volcanic ash and slag. J. Rock Mech. Geotech. Eng. 2021. [Google Scholar] [CrossRef]
- Kumar, P.G.; Harika, S. Stabilization of expansive subgrade soil by using fly ash. Materials 2020, 45, 6558–6562. [Google Scholar] [CrossRef]
- Chethan, B.A.; Ravi Shankar, A.U. Strength and Durability Characteristics of Cement and Class F Fly Ash-Treated Black Cotton Soil. Indian Geotech. J. 2021, 51, 1121–1133. [Google Scholar] [CrossRef]
- Prasad, S. Experimental Investigation of Soil Behaviour Using Industrial Fly Ash. Am. J. Eng. Technol. Manag. 2021, 6, 24. [Google Scholar] [CrossRef]
- Hamzah, H.N.; Al Bakri Abdullah, M.M.; Yong, H.C.; Zainol, M.R.R.A.; Hussin, K. Review of soil stabilization techniques: Geopolymerization method one of the new technique. Key Eng. Mater. 2015, 660, 298–304. [Google Scholar] [CrossRef]
- Singhi, B.; Laskar, A.I.; Ahmed, M.A. Investigation on Soil–Geopolymer with Slag, Fly Ash and Their Blending. Arab. J. Sci. Eng. 2016, 41, 393–400. [Google Scholar] [CrossRef]
- Hanegbi, N.; Katra, I. A clay-based geopolymer in loess soil stabilization. Appl. Sci. 2020, 10, 2608. [Google Scholar] [CrossRef]
- Murmu, A.L.; Dhole, N.; Patel, A. Stabilization of black cotton soil for subgrade application using fly ash geopolymer. Road Mater. Pavement Des. 2020, 21, 867–885. [Google Scholar] [CrossRef]
- Abdullah, M.S.; Ahmad, F. Effect of Alkaline Activator to Fly Ash Ratio for Geopolymer Stabilized Soil. MATEC Web Conf. 2017, 97, 01012. [Google Scholar] [CrossRef] [Green Version]
- Teerawattanasuk, C.; Voottipruex, P. Comparison between cement and fly ash geopolymer for stabilized marginal lateritic soil as road material. Int. J. Pavement Eng. 2019, 20, 1264–1274. [Google Scholar] [CrossRef]
- Pathak, A.K.; Pandey, V.; Murari, K.; Singh, J.P. Soil Stabilization Using Ground Granulated Blast Furnace Slag. J. Eng. Res. Appl. 2014, 4, 164. [Google Scholar] [CrossRef] [Green Version]
- Mandal, S.; Singh, J.P. Stabilization of Soil using Ground Granulated Blast Furnace Slag and Fly Ash. IJIRSET 2016, 5, 21121–21126. [Google Scholar] [CrossRef]
- Yankwa Djobo, J.N.; Elimbi, A.; Kouamo Tchakouté, H.; Kumar, S. Mechanical properties and durability of volcanic ash based geopolymer mortars. Constr. Build. Mater. 2016, 124, 606–614. [Google Scholar] [CrossRef]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; Van Deventer, J.S.J. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
- Javdanian, H. The effect of geopolymerization on the unconfined compressive strength of stabilized fine-grained soils. Int. J. Eng. Trans. B Appl. 2017, 30, 1673–1680. [Google Scholar] [CrossRef]
- Sukprasert, S.; Hoy, M.; Horpibulsuk, S.; Arulrajah, A.; Rashid, A.S.A.; Nazir, R. Fly ash-based geopolymer stabilization of silty clay/blast furnace slag for subgrade applications. Road Mater. Pavement Des. 2021, 22, 357–371. [Google Scholar] [CrossRef]
- Noolu, V.; Mallikarjuna Rao, G.; Sudheer Kumar Reddy, B.; Chavali, R.V.P. Strength, and durability characteristics of GGBS geopolymer stabilized black cotton soil. Mater. Today Proc. 2020, 43, 2373–2376. [Google Scholar] [CrossRef]
- Samuel, R.; Puppala, A.J.; Banerjee, A.; Huang, O.; Radovic, M.; Chakraborty, S. Improvement of Strength and Volume-Change Properties of Expansive Clays with Geopolymer Treatment. Transp. Res. Rec. J. Transp. Res. Board 2021, 2675, 308–320. [Google Scholar] [CrossRef]
- Ravi, K.; Gopal, V. Effect of Ground Granulated Blast Furnace Slag and Metakaolin on Geotechnical Properties of Clayey Soil. ICSWMD 2019, 21, 386–392. [Google Scholar] [CrossRef]
- Abdullah, H.H.; Shahin, M.A.; Walske, M.L.; Karrech, A. Systematic approach to assessing the applicability of fly-ash-based geopolymer for clay stabilization. Can. Geotech. J. 2020, 57, 1356–1368. [Google Scholar] [CrossRef]
- Alam, S.; Das, S.K.; Rao, B.H. Strength and durability characteristic of alkali activated GGBS stabilized red mud as geo-material. Constr. Build. Mater. 2019, 211, 932–942. [Google Scholar] [CrossRef]
- Toryila, T.M. Expansive Soil Stabilization Using Industrial Solid Wastes an Expansive Soil Stabilization Using Industrial Solid Wastes a Review. Int. J. Adv. Technol. Eng. Sci. 2016, 4, 636–646. [Google Scholar]
- Dayalan, J. Comparative Study on Stabilization of Soil with Ground Granulated Blast Furnace Slag (GGBS) and Fly Ash. Int. Res. J. Eng. Technol. 2016, 3, 2198–2204. [Google Scholar]
- Oormila, T.R.; Preethi, T.V. Effect of Stabilization Using Flyash and GGBS in Soil Characteristics. Int. J. Eng. Trends Technol. 2014, 11, 284–289. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sivapullaiah, P.V. Ground granulated blast furnace slag amended fly ash as an expansive soil stabilizer. Soils Found. 2016, 56, 205–212. [Google Scholar] [CrossRef]
- Simatupang, M.; Mangalla, L.K.; Edwin, R.S.; Putra, A.A.; Azikin, M.T.; Aswad, N.H.; Mustika, W. The mechanical properties of fly-ash-stabilized sands. Geosciences 2020, 10, 132. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, A.; Soni, D.K. Effects of Granulated Ground Blast Furnace Slag and Fly Ash on Stabilization of Soil; Springer: Singapore, 2019. [Google Scholar]
- Mujtaba, H.; Aziz, T.; Farooq, K.; Sivakugan, N.; Das, B.M. Improvement in Engineering Properties of Expansive Soils using Ground Granulated Blast Furnace Slag. J. Geol. Soc. India 2018, 92, 357–362. [Google Scholar] [CrossRef]
- Tigue, A.A.S.; Malenab, R.A.J.; Dungca, J.R.; Yu, D.E.C.; Promentilla, M.A.B. Chemical stability and leaching behavior of one-part geopolymer from soil and coal fly ash mixtures. Minerals 2018, 8, 411. [Google Scholar] [CrossRef] [Green Version]
- Tigue, A.A.S.; Dungca, J.R.; Hinode, H.; Kurniawan, W.; Promentilla, M.A.B. Synthesis of a one-part geopolymer system for soil stabilizer using fly ash and volcanic ash. Minerals 2018, 156, 05017. [Google Scholar] [CrossRef] [Green Version]
- Thomas, A.; Tripathi, R.K.; Yadu, L.K. A Laboratory Investigation of Soil Stabilization Using Enzyme and Alkali-Activated Ground Granulated Blast-Furnace Slag. Arab. J. Sci. Eng. 2018, 43, 5193–5202. [Google Scholar] [CrossRef]
- Abdila, S.R.; Mustafa, M.; Bakri, A.; Ahmad, R.; Zamree, S.; Rahim, A.; Rychta, M.; Wnuk, I.; Nabiałek, M.; Muskalski, K.; et al. Evaluation on the Mechanical Properties of Ground Granulated Blast Slag (GGBS) and Fly Ash Stabilized Soil via. Materials 2021, 14, 2833. [Google Scholar] [CrossRef]
- Parhi, P.S.; Garanayak, L.; Mahamaya, M.; Das, S.K. Stabilization of an Expansive Soil Using Alkali Activated Fly ash based Geopolymer. Sustain. Civ. Infrastruct. 2018, 1, 36–50. [Google Scholar] [CrossRef]
- 4609 AD. Standard Guide for Evaluating Effectiveness of Admixtures for Soil Stabilization; ASTM International: West Conshohocken, PA, USA, 2017; Volume 4, p. 5. [Google Scholar]
- 2166 AD. Standard Test Method for Unconfined Compressive Strength of Cohesive Soil; ASTM International: West Conshohocken, PA, USA, 2000; Volume 4, pp. 1–9. [Google Scholar]
- Aziz, I.H. Behaviour changes of ground granulated blast furnace slag geopolymers at high temperature. Adv. Cem. Res. 2019, 32, 465–475. [Google Scholar] [CrossRef]
- Taylor, P.; Journal, A.I.; Rao, F.; Liu, Q. Geopolymerization and Its Potential Application in Mine Tailings Consolidation: A Review Geopolymerization and Its Potential Application in Mine Tailings Consolidation: A Review. Miner. Process. Extr. Metall. Rev. 2015, 36, 399–409. [Google Scholar] [CrossRef]
- Ibrahim, A.; Abbas, J.M.; Shihab, A.M. Effect of NaOH molar concentration to soft clayey soil stabilized by fly ash-based geopolymer mechanical strength subjected to initial heating. Int. J. Eng. Res. Sci. Technol. 2018, 7, 1–9. [Google Scholar]
- Leong, H.Y.; Ong, D.E.L.; Sanjayan, J.G.; Nazari, A. Strength Development of Soil–Fly Ash Geopolymer: Assessment of Soil, Fly Ash, Alkali Activators, and Water. J. Mater. Civ. Eng. 2018, 30, 04018171. [Google Scholar] [CrossRef] [Green Version]
- Sharma, K.; Kumar, A. Utilization of industrial waste—Based geopolymers as a soil stabilizer—A review. Innov. Infrastruct. Solut. 2020, 5, 97. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, D.; Process, G.; Nwonu, D.C. A review on geopolymerisation in soil stabilization A review on geopolymerisation in soil stabilization. Mater. Sci. Eng. 2019, 495, 012070. [Google Scholar] [CrossRef]
- Khadka, S.D.; Jayawickrama, P.W.; Senadheera, S.; Segvic, B. Transportation Geotechnics Stabilization of highly expansive soils containing sulfate using metakaolin and fly ash based geopolymer modified with lime and gypsum. Transp. Geotech. 2020, 23, 100327. [Google Scholar] [CrossRef]
- Disu, A.A.; Kolay, P.K. A Critical Appraisal of Soil Stabilization Using Geopolymers: The Past, Present and Future. Int. J. Geosynth. Gr. Eng. 2021, 7, 23. [Google Scholar] [CrossRef]
- Parikshith, M.V.; Sekhar, D.C. Feasibility of Flyash based Geopolymer for Soil Stabilization. Int. J. Innov. Technol. Explor. Eng. 2019, 9, 4348–4351. [Google Scholar] [CrossRef]
- Xie, J.; Kayali, O. Effect of superplasticiser on workability enhancement of Class F and Class C fly ash-based geopolymers. Constr. Build. Mater. 2016, 122, 36–42. [Google Scholar] [CrossRef]
- Phummiphan, I.; Horpibulsuk, S.; Rachan, R.; Arulrajah, A.; Shen, S.; Chindaprasirt, P. Revised manuscript HAZMAT-D-17-00478R2 High Calcium Fly Ash Geopolymer Stabilized Lateritic Soil and Granulated Blast Furnace Slag Blends as a Pavement Base Material. J. Hazard. Mater. 2017, 341, 257–267. [Google Scholar] [CrossRef]
- Khasib, I.A.; Norsyahariati, N.; Daud, N. Physical and Mechanical Study of Palm Oil Fuel Ash (POFA) based Geopolymer as a Stabilizer for Soft Soil. Sci. Technol. 2020, 28, 149–160. [Google Scholar]
- Priyadharshini, P.; Ramamurthy, K.; Robinson, R.G. Applied Clay Science Excavated soil waste as fi ne aggregate in fly ash based geopolymer mortar. Appl. Clay Sci. 2017, 146, 81–91. [Google Scholar] [CrossRef]
- Provis, J.L. Alkali-activated materials. Cem. Concr. Res. 2018, 114, 40–48. [Google Scholar] [CrossRef]
- Aziz, I.H.; Zulkifly, K.; Sakkas, K.; Panias, D.; Tsaousi, G.M.; Bakri, M.M.A.; Al Yong, H.C. The Characterization of Steel Slag by Alkali Activation. OALib 2017, 4, 1–13. [Google Scholar] [CrossRef]
- Zaliha, S.; Zuber, S.; Mustafa, M.; Bakri, A.; Hussin, K.; Ahmad, F.; Binhussain, M. The Influence of Geopolymerization Process on Liquid and Plastic Limits of The Influence of Geopolymerization Process on Liquid and Plastic Limits of Soils. Appl. Mech. Mater. 2015, 754, 886–891. [Google Scholar] [CrossRef]
- Zaliha, S.Z.S.; Al Bakri, A.M.M.; Kamarudin, H.; Fauziah, A. Characterization of soils as potential raw materials for soil stabilization application using geopolymerization method. Mater. Sci. Forum 2015, 803, 135–143. [Google Scholar] [CrossRef]
- Wazien, W. Strength and Density of Geopolymer Mortar Cured at Ambient Temperature for Use as Repair Material Strength and Density of Geopolymer Mortar Cured at Ambient Temperature for Use as Repair Material. Mater. Sci. Eng. 2016, 133, 012042. [Google Scholar] [CrossRef]
- Department, P.W. Development of Design Guidelines for Rural Low Volume Roads in Malaysia. In Proceedings of the ARRB Conference—Shaping the Future: Linking Policy, Research and Outcomes, Perth, Australia, 23–26 September 2012; Volume 1, pp. 1–12. [Google Scholar]
- Alonso, S.; Palomo, A. Calorimetric study of alkaline activation of calcium hydroxide-metakaolin solid mixtures. Cem. Concr. Res. 2001, 31, 25–30. [Google Scholar] [CrossRef]
- Aizat, E.A. Dolomite/fly ash alkali activated geopolymer strengths with the influence of solid/liquid ratio Dolomite/Fly Ash Alkali Activated Geopolymer Strengths with the Influence of Solid/Liquid Ratio. MATEC Web Conf. 2018, 78, 020274. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, H.; El-Korchi, T.; Zhang, G.; Tao, M. Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Constr. Build. Mater. 2013, 47, 1468–1478. [Google Scholar] [CrossRef]
- Ayyappan, A. Influence of Geopolymers in the Stabilization of Clayey soil. Int. J. Emerg. Technol. Eng. Res. 2017, 5, 108–120. [Google Scholar]
- Dheyab, W.; Ismael, Z.T.; Hussein, M.A.; Bin, B.; Huat, K. Soil Stabilization with Geopolymers for Low Cost and Environmentally Friendly Construction. Int. J. GEOMATE 2019, 17, 271–280. [Google Scholar] [CrossRef]
- Trinh, S.H.; Anh, Q.; Bui, T. Influencing of Clay, and Binder Content on Compression Strength of Soft Soil Stabilized by Geopolymer Based Fly Ash. Int. J. Appl. Eng. Res. 2018, 13, 7954–7958. [Google Scholar]
- Ghugal, Y.M. Effect of Fineness of Fly Ash on Flow and Compressive Strength of Geopolymer Concrete Effect of fly ash fineness on workability and compressive strength of geopolymer concrete. Indian Concr. J. 2013, 1, 57–62. [Google Scholar]
- Liu, Z.; Asce, S.M.; Cai, C.S.; Ph, D.; Asce, F.; Liu, F.; Fan, F.; Ash, F. Feasibility Study of Loess Stabilization with Fly Ash—Based Geopolymer. J. Mater. Civ. Eng. 2016, 28, 04016003. [Google Scholar] [CrossRef]
- Malkawi, A.B.; Fadhil, M.; Fauzi, A.; Almattarneh, H. Effects of Alkaline Solution on Properties of the HCFA Geopolymer Mortars. Procedia Eng. 2016, 148, 710–717. [Google Scholar] [CrossRef] [Green Version]
- Phetchuay, C.; Horpibulsuk, S.; Arulrajah, A. Applied Clay Science Strength development in soft marine clay stabilized by fly ash and calcium carbide residue based geopolymer. Appl. Clay Sci. 2016, 127, 134–142. [Google Scholar] [CrossRef]
- Burduhos Nergis, D.D.; Vizureanu, P.; Corbu, O. Synthesis and characteristics of local fly ash-based geopolymers mixed with natural aggregates. Rev. Chim. 2019, 70, 1262–1267. [Google Scholar] [CrossRef]
- Burduhos Nergis, D.D.; Vizureanu, P.; Ardelean, I.; Sandu, A.V.; Corbu, O.C.; Matei, E. Revealing the Influence of Microparticles on Geopolymers’ Synthesis and Porosity. Materials 2020, 13, 3211. [Google Scholar] [CrossRef]
- Kwek, S.Y. Influence of Liquid-to-Solid and Alkaline Activator (Sodium Silicate to Sodium Hydroxide) Ratios on Fresh and Hardened. Materials 2021, 14, 4253. [Google Scholar] [CrossRef] [PubMed]
- Zaliha, S. Review on Soil Stabilization Techniques Review on Soil Stabilization Techniques. Aust. J. Basic Appl. Sci. 2013, 7, 258–265. [Google Scholar]
- Tempest, B.; Sanusi, O.; Gergely, J.; Ogunro, V.; Weggel, D. Compressive Strength and Embodied Energy Optimization of Fly Ash-Based Geopolymer Concrete. In Proceedings of the 3rd World Coal Ash, WOCA Conference, Lexington, KY, USA, 4–7 May 2009; Volume 1, pp. 1–17. [Google Scholar]
No | Author | Testing | Raw Materials | Percentage of Blended Mix Proportion (%) | Curing Condition | Finding |
---|---|---|---|---|---|---|
1. | Simatupang et al. [68] |
|
| Fly ash: 5%, 10%, 15%, 20%, and 25% | 7, 14, 28, and 56 days curing at room temperature |
|
2. | Dayalan J et al. [65] |
|
| Fly ash: 5%, 10%, 15%, 20%, and 25% GGBFS: 5%, 10%, 15%, 20%, and 25% | 1 day curing |
|
3. | Neeladharan et al. [39] |
|
| Fly ash: 5%, 10%, 15%, and 20%, GGBFS: 2.5%, 5%, 7.5%, and 10%, | 1 day curing |
|
4. | Oormila et al. [66] |
|
| Fly ash: 5%, 10%, 15%, and 20%, GGBFS: 15%,20%, and 25%, | 7, 14, and 21 days curing at room temperature |
|
5. | Sharma et al. [67] |
|
| Fly ash: 70% GGBFS: 30% | 7, 14, and 28 days curing at room temperature |
|
6. | Mandal et al. [54] |
|
| Fly ash: 5%, 10%, 15%, 20%, and 25% GGBFS: 10% | 1 day curing |
|
7. | Tyagi et al. [69] |
|
| Fly ash: 0%, 3%, 6%, 9%, 12%, 15%, and 18%, GGBFS: 0%, 5%, 10%, 15%,20%, 25%, and 30% | 7 and 14 day curing |
|
8. | Mujtaba et al. [70] |
|
| GGBFS: 5%, 10%, 15%, 20%, 30%, 40%, 50%, and 55% | 0, 3, 7, 14, and 28 days curing at room temperature |
|
No | Author | Testing | Raw Materials | Activator Chemical | Molarity NaOH (M) | Percentage of Blended Mix Proportion (%) | Curing Condition | Finding |
---|---|---|---|---|---|---|---|---|
1. | Anne et al. [72] |
|
|
| Na/Al: 2.05 Si/Al: 2.64 Na/Si: 0.78 | Fly ash: 15% and 25% | 7, 14, and 28 days of curing at room temperature |
|
2. | Thomas et al. et al. [73] |
|
|
| 1 M | GGBFS: 6%, 9%, 12%, 15%, 20%, and 30% | 7 and 28 days of curing at room temperature |
|
3. | Abdullah et al. [51] |
|
|
| 10 M | Fly ash: 8% | 7 and 28 days of curing at room temperature |
|
4. | Parhi et al. [75] |
|
|
| 10 M, 12.5 M and 15 M | Fly ash: 20%, 30%, and 40% | 3 and 7 days of curing at room temperature |
|
5. | Phummiphan et al. [88] |
|
|
| 5 M | Fly ash: 30% GGBFS: 10%, 20%, and 30%, | 7, 28, and 60 days of curing |
|
6. | Leong et al. [81] |
|
|
| 8 M | Ratio Fly ash/Soil: 0.3, 0.6, 0.8, and 0.9 | 1 day of curing at 100 °C temperature |
|
7. | Shihab et al. [80] |
|
|
| 10 M, 12M, and 14M | Fly ash: 8%, 10%, 12%, and 14% | 1 day of curing at 70 °C temperature |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdila, S.R.; Abdullah, M.M.A.B.; Ahmad, R.; Burduhos Nergis, D.D.; Rahim, S.Z.A.; Omar, M.F.; Sandu, A.V.; Vizureanu, P.; Syafwandi. Potential of Soil Stabilization Using Ground Granulated Blast Furnace Slag (GGBFS) and Fly Ash via Geopolymerization Method: A Review. Materials 2022, 15, 375. https://doi.org/10.3390/ma15010375
Abdila SR, Abdullah MMAB, Ahmad R, Burduhos Nergis DD, Rahim SZA, Omar MF, Sandu AV, Vizureanu P, Syafwandi. Potential of Soil Stabilization Using Ground Granulated Blast Furnace Slag (GGBFS) and Fly Ash via Geopolymerization Method: A Review. Materials. 2022; 15(1):375. https://doi.org/10.3390/ma15010375
Chicago/Turabian StyleAbdila, Syafiadi Rizki, Mohd Mustafa Al Bakri Abdullah, Romisuhani Ahmad, Dumitru Doru Burduhos Nergis, Shayfull Zamree Abd Rahim, Mohd Firdaus Omar, Andrei Victor Sandu, Petrica Vizureanu, and Syafwandi. 2022. "Potential of Soil Stabilization Using Ground Granulated Blast Furnace Slag (GGBFS) and Fly Ash via Geopolymerization Method: A Review" Materials 15, no. 1: 375. https://doi.org/10.3390/ma15010375
APA StyleAbdila, S. R., Abdullah, M. M. A. B., Ahmad, R., Burduhos Nergis, D. D., Rahim, S. Z. A., Omar, M. F., Sandu, A. V., Vizureanu, P., & Syafwandi. (2022). Potential of Soil Stabilization Using Ground Granulated Blast Furnace Slag (GGBFS) and Fly Ash via Geopolymerization Method: A Review. Materials, 15(1), 375. https://doi.org/10.3390/ma15010375