Effect of Sintering Temperature on Adhesion Property and Electrochemical Activity of Pt/YSZ Electrode
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussions
3.1. Micromorphologies of Pt/YSZ Electrodes
3.2. Adhesion Analysis of Pt/YSZ Electrodes
3.3. Chronoamperometry
3.4. Linear Scan Voltammetry Analysis
3.5. AC Impedance Spectrum Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ng, E.C.Y.; Huang, Y.; Hong, G.; Zhou, J.L.; Surawski, N.C. Reducing vehicle fuel consumption and exhaust emissions from the application of a green-safety device under real driving. Sci. Total Environ. 2021, 793, 148602. [Google Scholar] [CrossRef] [PubMed]
- Praveena, V.; Martin, M.L.J. A Review on Various After Treatment Techniques to Reduce NOx emissions in a CI Engine. J. Energy Inst. 2018, 91, 704–720. [Google Scholar] [CrossRef]
- Sderena, P.; Laurikko, J.; Weber, C. Monitoring Euro 6 diesel passenger cars NOx emissions for one year in various ambient conditions with PEMS and NOx sensors. Sci. Total Environ. 2020, 746, 140971. [Google Scholar] [CrossRef] [PubMed]
- di Bartolomeo, E.; Grilli, M.L.; Yoon, J.W.; Traversa, E. Zirconia-Based Electrochemical NOx Sensors with Semiconducting Oxide Electrodes. J. Am. Ceram. Soc. 2004, 87, 1883–1889. [Google Scholar] [CrossRef]
- Park, C.O.; Fergus, J.W.; Miura, N.; Park, J.; Choi, A. Solid-state electrochemical gas sensors. Ionics 2009, 15, 261–284. [Google Scholar] [CrossRef]
- Cai, H.; Sun, R.; Yang, X. Mixed-potential type NOx sensor using stabilized zirconia and MoO3-In2O3 nanocomposites. Ceram. Int. 2016, 42, 12503–12507. [Google Scholar] [CrossRef]
- Shimizu, Y.; Nakano, H.; Takase, S.; Song, J.H. Solid Electrolyte Impedance metric NOx Sensor Attached with Zeolite Receptor. Sens. Actuators B Chem. 2018, 264, 177–183. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, Z.H.; Zhu, R.J.; Zhou, Y.H.; Li, X. Modeling and analysis of pumping cell of NOx sensor—Part I: Main oxygen pumping cell. Sens. Actuators B Chem. 2022, 359, 131622. [Google Scholar] [CrossRef]
- Mutoro, E.; Luerßen, B.; Günther, S.; Janek, J. The electrode model system Pt(O2)|YSZ: Influence of impurities and electrode morphology on cyclic voltammograms. Solid State Ion. 2009, 180, 1019–1033. [Google Scholar] [CrossRef]
- Jaccoud, A.; Fóti, G.; Wüthrich, R.; Jotterand, H.; Comninellis, C. Effect of microstructure on the electrochemical behavior of Pt/YSZ electrodes. Top. Catal. 2007, 44, 409–417. [Google Scholar] [CrossRef]
- Sekhar, P.K.; Brosha, E.L.; Mukundan, R.; Nelson, M.A.; Toracco, D.; Garzon, F.H. Effect of yttria-stabilized zirconia sintering temperature on mixed potential sensor performance. Solid State Ion. 2010, 181, 947–953. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Huong, D.V.; Ngan, P.Q.; Thai, G.H.; Thu, D.T.A.; Thu, D.T.; Tuoi, N.T.M.; Toan, N.N.; Giang, H.T. Effect of sintering temperature of mixed potential sensor Pt/YSZ/LaFeO3 on gas sensing performance. Sens. Actuators B Chem. 2016, 224, 747–754. [Google Scholar]
- Nurhamizah, A.; Ibrahim, Z.; Muhammad, R.; Wahab, Y.; Sakrani, S. Effect of Annealing Temperature on Platinum/YSZ Thin Film Fabricated Using RF and DC Magnetron Sputtering. Solid State Phenom. 2017, 268, 229–233. [Google Scholar] [CrossRef]
- Boer, B.D.; Gonzalez, M.; Bouwmeester, H.; Verweij, H. The effect of the presence of fine YSZ particles on the performance of porous nickel electrodes. Solid State Ion. 2000, 127, 269–276. [Google Scholar] [CrossRef]
- Xia, C.Y.; Lu, X.C.; Yan, Y.; Wang, T.Z.; Zhang, Z.M.; Yang, S.P. Preparation of nano-structured Pt-YSZ composite and its application in oxygen potentiometric sensor. Appl. Surf. Sci. 2011, 257, 7952–7958. [Google Scholar]
- Li, X.D.; Wang, C.; Wang, B.; Yuan, Y.; Huang, J.Q.; Zhang, H.B.; Xia, F.; Xiao, J.Z. Effects of sintering temperature on the NH3 sensing properties of Mg2Cu0.25Fe1O3.75 electrode for YSZ-based potentiometric NH3 sensor. Ceram. Int. 2016, 42, 2214–2220. [Google Scholar]
- Badwal, S.; Ciacchi, F.T. Microstructure of Pt electrodes and its influence on the oxygen transfer kinetics. Solid State Ion. 1986, 18, 1054–1059. [Google Scholar] [CrossRef]
- Lei, C.; Li, X.D.; Zhou, L.H.; Xia, F.; Xiao, J.Z. Effect of the Cofiring Temperature on the Characteristics of Pump Oxygen Pt/YSZ Electrodes. Micronanoelectron. Technol. 2013, 50, 194–198. (In Chinese) [Google Scholar]
- Han, Q.; Feng, T.; Xia, J.F. Preparation and Characterization of Porous Pt/YSZ Electrode for Zirconia Oxygen Sensor. J. Funct. Mater. Devices 2013, 3, 114–118. (In Chinese) [Google Scholar]
- Buyukaksoy, A.; Petrovsky, V.; Dogan, F. Solid oxide fuel cells with symmetrical Pt-YSZ electrodes prepared by YSZ infiltration. J. Electrochem. Soc. 2013, 160, F482. [Google Scholar] [CrossRef]
- Choi, J.H.; Hwang, J.; Kim, G.; Choi, J.J.; Ahn, C.W.; Kim, J.W.; Hahn, B.D.; Yoon, W.H.; Min, Y.H. Catalyst adhesion enhancement by porous TiO2 layer formed on anodized titanium honeycomb substrate. Ceram. Int. 2021, 47, 7241–7247. [Google Scholar] [CrossRef]
- Fóti, G.; Jaccoud, A.; Falgairette, C.; Comninellis, C. Charge storage at the Pt/YSZ interface. J. Electroceram. 2009, 23, 175–179. [Google Scholar] [CrossRef] [Green Version]
- Holm, T.; Dahlstrøm, P.K.; Sunde, S.; Seland, F.; Harrington, D.A. Dynamic electrochemical impedance study of methanol oxidation at Pt at elevated temperatures. Electrochim. Acta 2019, 295, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Jaccoud, A.; Falgairette, C.; Fóti, G.; Comninellis, C. Charge storage in the O2(g), Pt/YSZ system. Electrochim. Acta 2007, 52, 7927–7935. [Google Scholar] [CrossRef]
- PöPke, H.; Mutoro, E.; Raiß, C.; Luerßen, B.; Amati, M.; Abyaneh, M.K.; Gregoratti, L.; Janek, J. The role of platinum oxide in the electrode system Pt(O2)/yttria-stabilized zirconia. Electrochim. Acta 2011, 56, 10668–10675. [Google Scholar] [CrossRef]
- Stuart, A.; Foulkes, F. Study of ECE reactions with multiple parallel chemical steps using linear scan voltammetry. Electrochim. Acta 1988, 33, 1411–1424. [Google Scholar] [CrossRef]
- Nielsen, J.; Jacobsen, T. Three-phase-boundary dynamics at Pt/YSZ microelectrodes. Solid State Ion. 2007, 178, 1001–1009. [Google Scholar] [CrossRef]
- Falgairette, C.; Xia, C.; Li, Y.D.; Harbich, W.; Foti, G.; Comninellis, C. Investigation of the Pt/YSZ interface at low oxygen partial pressure by solid electrochemical mass spectroscopy under high vacuum conditions. J. Appl. Electrochem. 2010, 40, 1901–1907. [Google Scholar] [CrossRef]
- Jaiswal, S.K.; Kumar, J. On the sol-gel synthesis and structure, optical, magnetic and impedance behaviour of strontium cobaltite powder. J. Alloys Compd. 2011, 509, 3859–3865. [Google Scholar] [CrossRef]
- Barbucci, A.; Bozzo, R.; Cerisola, G.; Costamagna, P. Characterisation of composite SOFC cathodes using electrochemical impedance spectroscopy. Analysis of Pt/YSZ and LSM/YSZ electrodes. Electrochim. Acta 2002, 47, 2183–2188. [Google Scholar] [CrossRef]
- Opitz, A.K.; Fleig, J. Investigation of O2 reduction on Pt/YSZ by means of thin film microelectrodes: The geometry dependence of the electrode impedance. Solid State Ion. 2010, 181, 684–693. [Google Scholar] [CrossRef]
- Drasbæk, D.B.; Traulsen, M.L.; Sudireddy, B.R.; Holtappels, P. Understanding the Electrocatalytic Activity of Transition Metal Nanoparticles for Solid Oxide Cell Fuel Electrodes. Electrochim. Acta 2019, 327, 135004. [Google Scholar] [CrossRef]
Materials | Grain Size (nm) | D50 (µm) | Specific Surface Area (m2/g) | Phase Analysis |
---|---|---|---|---|
YSZ(Zr0.95Y0.05O1.975) | 42.6 | 0.169 | 12.83 | c-ZrO2 |
Pt | 79 | 0.5 | 13.56 | c-Pt |
sintering temperature/°C | 1350 | 1400 | 1450 | 1500 | 1550 |
electrode activation energy/eV | 1.16 | 1.12 | 1.05 | 1.02 | 1.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Cui, J.; Zhang, X.; Tang, W.; Mao, C. Effect of Sintering Temperature on Adhesion Property and Electrochemical Activity of Pt/YSZ Electrode. Materials 2022, 15, 3471. https://doi.org/10.3390/ma15103471
Wang J, Cui J, Zhang X, Tang W, Mao C. Effect of Sintering Temperature on Adhesion Property and Electrochemical Activity of Pt/YSZ Electrode. Materials. 2022; 15(10):3471. https://doi.org/10.3390/ma15103471
Chicago/Turabian StyleWang, Jixin, Jiandong Cui, Xiao Zhang, Wentao Tang, and Changhui Mao. 2022. "Effect of Sintering Temperature on Adhesion Property and Electrochemical Activity of Pt/YSZ Electrode" Materials 15, no. 10: 3471. https://doi.org/10.3390/ma15103471
APA StyleWang, J., Cui, J., Zhang, X., Tang, W., & Mao, C. (2022). Effect of Sintering Temperature on Adhesion Property and Electrochemical Activity of Pt/YSZ Electrode. Materials, 15(10), 3471. https://doi.org/10.3390/ma15103471