Experimental Study on Recentering Behavior of Precompressed Polyurethane Springs
Abstract
:1. Introduction
2. Design of Polyurethane Springs
3. Experimental Set-Up
4. Experimental Results and Discussion
4.1. Behavior of Polyurethane Springs without Precompression
4.2. Behavior of Precompressed Polyurethane Springs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ozbulut, O.E.; Hurlebaus, S. Application of an SMA-based hybrid control device to 20-story nonlinear benchmark building. Earthq. Eng. Struct. Dyn. 2012, 41, 1831–1843. [Google Scholar] [CrossRef]
- Hu, J.W. Seismic analysis and evaluation of several recentering braced frame structures. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2013, 228, 781–798. [Google Scholar] [CrossRef]
- Seo, J.; Kim, Y.C.; Hu, J.W. Pilot study for investigating the cyclic behavior of slit damper systems with recentering shape memory alloy (SMA) bending bar used for seismic restrainers. Appl. Sci. 2015, 5, 187–208. [Google Scholar] [CrossRef]
- Ju, Y.H.; Hu, J.W. Experimental study on the behavior of polyurethane springs for compression members. Appl. Sci. 2021, 11, 10223. [Google Scholar] [CrossRef]
- Bonaventura, T.; Rosario, M.; Maria, G.C. Shake table testing and numerical modelling of a steel pallet racking sturcture with a seismic isolation system. Thin Walled Struct. 2021, 164, 107924. [Google Scholar] [CrossRef]
- Teruna, D.R.; Majid, T.A.; Budiono, B. Experimental study of hysteretic steel damper for energy dissipation capacity. Adv. Civ. Eng. 2015, 2015, 631726. [Google Scholar] [CrossRef] [Green Version]
- Seyede, V.H.; Majid, P.; Abbasali, S. Seismic fragility curve development of frames with BRB’s equipped with smart materials subjected to mainshock-aftershock ground motion. J. Struct. Constr. Eng. 2021, 8, 79–95. [Google Scholar]
- Alireza, T.; Mieczyslaw, K.; Piotr, N.; Malgorzata, K.; Ahad, J. Sustainability of civil structures through the application of smart materials: A review. Materials 2021, 14, 4824. [Google Scholar] [CrossRef]
- Morais, J.; Gil de Morais, P.; Santos, C.; Campos Costa, A.; Candeias, P. Shape memory alloy based dampers for earthquake response mitigation. Procedia Struct. Integr. 2017, 5, 705–712. [Google Scholar] [CrossRef]
- Bogue, R. Smart materials: A review of recent developments. Assem. Autom. 2012, 32, 3–7. [Google Scholar] [CrossRef]
- Bahl, S.; Nagar, H.; Singh, I.; Sehgal, S. Smart materials types, properties and applications: A review. Mater. Today. Proc. 2020, 28, 1302–1306. [Google Scholar] [CrossRef]
- Jin, S.; Deng, L.; Yang, J.; Sun, S.; Ning, D.; Li, Z.; Du, H.; Li, W.H. A smart passive MR damper with a hybrid powering system for impact mitigation: An experimental study. J. Intell. Mater. Syst. Struct. 2021, 32, 1452–1461. [Google Scholar] [CrossRef]
- Shahin, Z.; Anas, S.I.; Rudolf, S.; Abolghassem, Z.; Rafiq, A. A novel SMA-magnetorheological hybrid bracing system for seismic control. Eng. Struct. 2021, 244, 112709. [Google Scholar] [CrossRef]
- DesRoches, R.; McCormick, J.; Delemont, M. Cyclic properties of superelastic shape memory alloy wires and bars. J. Struct. Eng. 2004, 130, 38–46. [Google Scholar] [CrossRef]
- Song, M.K.; Noh, H.C.; Kim, S.H.; Han, I.S. Control of free vibration with piezoelectric materials: Finite element modeling based on Timoshenko beam theory. Struct. Eng. Mech. 2005, 19, 477–501. [Google Scholar] [CrossRef]
- Shu, Z. Application of piezoelectric materials in structural health monitoring of civil engineering structure. Chem. Eng. Trans. 2017, 59, 523–528. [Google Scholar] [CrossRef]
- Han, Y.L.; Yin, H.Y.; Xiao, E.T.; Sun, Z.L.; Li, A.Q. A kind of NiTi-wire shape memory alloy damper to simultaneously damp tension, compression and torsion. Struct. Eng. Mech. 2006, 22, 241–262. [Google Scholar] [CrossRef]
- Hu, J.W. Seismic analysis and parametric study of SDOF lead-rubber bearing (LRB) isolation systems with recentering shape memory alloy (SMA) bending bars. J. Mech. Sci. Technol. 2016, 30, 2987–2999. [Google Scholar] [CrossRef]
- Jiang, X.; Qin, R.; Wang, M.; Xu, M.; Sheng, Y.; Lu, X. Controllable wide temperature range and high damping polyurethane elastomer based on disulfide bond and dangling chain. Polym. Adv. Technol. 2021, 32, 2185–2196. [Google Scholar] [CrossRef]
- Petrović, Z.S.; Ferguson, J. Polyurethane elastomers. Prog. Polym. Sci. 1991, 16, 695–836. [Google Scholar] [CrossRef]
- Yong, Y.; Wei, W.; Zhibo, N. Analytical and experimental studies on an innovative steel damper reinforced polyurethane bearing for seismic isolatino applications. Eng. Struct. 2021, 239, 112254. [Google Scholar] [CrossRef]
- Jeong, B.; Cheon, J.; Chun, J.; Mok, D.; Lee, H. Synthesis and characterization of polyurethane elastomer. J. Adhes. Interf. 2009, 10, 169–173. [Google Scholar]
- Kojio, K.; Furukawa, M.; Nonaka, Y.; Nakamura, S. Control of mechanical properties of thermoplastic polyurethane elastomers by restriction of crystallization of soft segment. Materials 2010, 3, 5097–5110. [Google Scholar] [CrossRef] [PubMed]
- Somarathna, H.; Raman, S.N.; Mohotti, D.; Mutalib, A.A.; Badri, K.H. The use of polyurethane for structural and infrastructural engineering applications: A state-of-the-art review. Constr. Build. Mater. 2018, 190, 995–1014. [Google Scholar] [CrossRef]
- Choi, E.; Jeon, J.; Seo, J. Cyclic compressive behavior of polyurethane rubber springs for smart dampers. Smart Struct. Syst. 2017, 20, 739–757. [Google Scholar] [CrossRef]
- Qi, H.J.; Boyce, M.C. Stress-strain behavior of thermoplastic polyurethanes. Mech. Mater. 2005, 37, 817–839. [Google Scholar] [CrossRef]
- Koblar, D.; Škofic, J.; Boltežar, M. Evaluation of the young’s modulus of rubber-like materials bonded to rigid surfaces with respect to poisson’s ratio. J. Mech. Eng. 2014, 60, 506–511. [Google Scholar] [CrossRef] [Green Version]
- Hossein, V.; Masoud, H.; Ramin, S.; Subhash, R. Effect of shape factor on compression mode dynamic properties of magnetorheological elastomers. J. Intell. Mater. Syst. Struct. 2021, 32, 1678–1699. [Google Scholar] [CrossRef]
Type | D (mm) | Din (mm) | L (mm) | S | Ea (MPa) | kc (kN/mm) |
---|---|---|---|---|---|---|
1 | 92 | 20 | 100 | 0.18 | 87.21 | 5.52 |
88 | 20 | 90 | 0.20 | 88.03 | 5.85 | |
82 | 20 | 80 | 0.20 | 88.37 | 5.72 | |
77 | 20 | 70 | 0.21 | 89.03 | 5.80 | |
72 | 20 | 60 | 0.23 | 89.97 | 5.96 | |
2 | 100 | 20 | 100 | 0.21 | 88.57 | 6.87 |
100 | 20 | 90 | 0.23 | 89.94 | 7.75 | |
100 | 20 | 80 | 0.26 | 91.86 | 8.90 | |
100 | 20 | 70 | 0.29 | 94.65 | 10.48 | |
100 | 20 | 60 | 0.34 | 98.95 | 12.79 |
Typical Prepolymer Properties | |
% NCO | 6.1–6.5 |
Brookfield Viscosity @ 100 °C | 1.5–4.5 |
Specific Gravity | |
@ 25 °C | 1.07 |
@ 100 °C | 1.01 |
Typical Physical Properties | |
Shore Hardness | 95A |
100% Modulus, psi (MPa) | 1900 (13.0) |
300% Modulus, psi (MPa) | 4000 (27.5) |
Tensile, psi (MPa) | 5500 (37.9) |
Elongation, % | 400 |
Tear Strength, Die C, pli (kN/m) | 550 (96.0) |
Tear Strength, (D470), pli (kN/m) | 140 (24.5) |
Bashore Rebound, % | 40 |
Compression Set, Method B, 22 h @ 70 °C, % | 38 |
Specific Gravity | 1.13 |
Condition | ||||
---|---|---|---|---|
Precompression Strain (εP) | 0% | 7% | 14% | 21% |
Maximum Strain (εmax) | 25% | 30% | 35% | 40% |
Loading Speed (vL) | 0.5 mm/s | |||
Loading Cycle | 3 cycle |
Type | Specimen | Slop | Y-Intercept | R2 | X-Intercept |
---|---|---|---|---|---|
1 | 100L-92D-25% | 1.752 | −7.793 | 0.8125 | 4.45 |
90L-88D-25% | 1.775 | −8.345 | 0.9248 | 4.70 | |
80L-82D-25% | 1.817 | −10.063 | 0.9872 | 5.54 | |
70L-77D-25% | 1.059 | −4.533 | 1 | 4.28 | |
60L-72D-25% | 1.326 | −6.251 | 0.9407 | 4.71 | |
100L-92D-30% | 1.273 | −7.107 | 0.9822 | 5.58 | |
90L-88D-30% | 1.526 | −10.077 | 0.9999 | 6.60 | |
80L-82D-30% | 0.929 | −3.691 | 0.9735 | 3.97 | |
70L-77D-30% | 0.983 | −3.578 | 0.9985 | 3.64 | |
60L-72D-30% | 0.794 | −2.673 | 0.9997 | 3.37 | |
100L-92D-35% | 1.441 | −7.758 | 0.9197 | 5.38 | |
90L-88D-35% | 1.871 | −14.734 | 0.9102 | 7.87 | |
80L-82D-35% | 1.289 | −5.113 | 0.9928 | 3.97 | |
70L-77D-35% | 1.073 | −3.766 | 0.9997 | 3.51 | |
60L-72D-35% | 0.761 | −1.114 | 0.9767 | 1.46 | |
100L-92D-40% | 1.056 | −6.223 | 0.9746 | 5.89 | |
90L-88D-40% | 1.393 | −9.759 | 0.9453 | 7.01 | |
80L-82D-40% | 1.111 | −6.082 | 0.9992 | 5.47 | |
70L-77D-40% | 0.843 | −4.406 | 0.9574 | 5.23 | |
60L-72D-40% | 0.724 | −2.737 | 0.8855 | 3.78 | |
2 | 100L-100D-25% | 2.6504 | −12.616 | 1 | 4.76 |
90L-100D-25% | 2.5716 | −13.26 | 0.91478 | 5.16 | |
80L-100D-25% | 2.5716 | −14.978 | 0.7571 | 5.82 | |
70L-100D-25% | 3.1399 | −23.634 | 0.8276 | 7.53 | |
60L-100D-25% | 3.4823 | −21.159 | 0.9833 | 6.08 | |
100L-100D-30% | 1.6934 | −7.6481 | 0.9865 | 4.52 | |
90L-100D-30% | 2.3231 | −16.463 | 0.9995 | 7.09 | |
80L-100D-30% | 2.3163 | −12.485 | 0.9721 | 5.39 | |
70L-100D-30% | 1.8094 | −7.5633 | 0.9948 | 4.18 | |
60L-100D-30% | 2.189 | −9.3453 | 0.9957 | 4.27 | |
100L-100D-35% | 1.8245 | −9.4762 | 0.9965 | 5.19 | |
90L-100D-35% | 1.9882 | −13.026 | 0.9705 | 6.55 | |
80L-100D-35% | 1.7806 | −8.4791 | 0.9954 | 4.76 | |
70L-100D-35% | 1.9003 | 10.197 | 0.9504 | -5.37 | |
60L-100D-35% | 2.0473 | 11.598 | 0.9868 | -5.67 | |
100L-100D-40% | 1.5851 | −10.304 | 0.9438 | 6.50 | |
90L-100D-40% | 1.6669 | −10.388 | 0.9966 | 6.23 | |
80L-100D-40% | 1.4669 | −8.9317 | 0.9789 | 6.09 | |
70L-100D-40% | 1.2487 | −7.4749 | 0.9796 | 5.99 | |
60L-100D-40% | 1.7124 | −11.131 | 0.9587 | 6.50 |
Type | Specimen | Slop | Y-Intercept | R2 | X-Intercept |
---|---|---|---|---|---|
1 | 100L-92D-25% | 1.843 | −6.6404 | 0.9927 | 3.60 |
90L-88D-25% | 2.01 | −9.4479 | 0.989 | 4.70 | |
80L-82D-25% | 1.7624 | −5.7635 | 0.9897 | 3.27 | |
70L-77D-25% | 1.3851 | −5.7989 | 0.987 | 4.19 | |
60L-72D-25% | 1.332 | −5.1695 | 0.9861 | 3.88 | |
100L-92D-30% | 1.858 | −9.1579 | 0.9916 | 4.93 | |
90L-88D-30% | 1.622 | −6.9445 | 0.9969 | 4.28 | |
80L-82D-30% | 1.4911 | −6.8808 | 0.9975 | 4.61 | |
70L-77D-30% | 1.1229 | −3.9531 | 0.9952 | 3.52 | |
60L-72D-30% | 1.088 | −4.5613 | 0.9933 | 4.19 | |
100L-92D-35% | 1.605 | 8.3588 | 0.9967 | −5.21 | |
90L-88D-35% | 1.379 | −6.3929 | 0.9985 | 4.64 | |
80L-82D-35% | 1.129 | −5.6716 | 0.9993 | 5.02 | |
70L-77D-35% | 1.0047 | −4.9644 | 0.9994 | 4.94 | |
60L-72D-35% | 0.9517 | −4.4906 | 0.999 | 4.72 | |
100L-92D-40% | 1.4101 | −8.9104 | 0.9962 | 6.32 | |
90L-88D-40% | 1.2472 | −6.4777 | 0.9999 | 5.19 | |
80L-82D-40% | 1.0941 | −5.6928 | 0.9999 | 5.20 | |
70L-77D-40% | 0.8759 | −3.9461 | 0.9987 | 4.51 | |
60L-72D-40% | 0.835 | −3.1894 | 0.9993 | 3.82 | |
2 | 100L-100D-25% | 1.8427 | −6.6121 | 0.9934 | 3.59 |
90L-100D-25% | 2.7337 | −11.654 | 0.9904 | 4.26 | |
80L-100D-25% | 2.5519 | −9.7873 | 0.9898 | 3.84 | |
70L-100D-25% | 2.9217 | −11.279 | 0.9911 | 3.86 | |
60L-100D-25% | 2.8141 | −12.22 | 0.9882 | 4.34 | |
100L-100D-30% | 2.3003 | −11.958 | 0.9957 | 5.20 | |
90L-100D-30% | 2.2822 | −11.463 | 0.9955 | 5.02 | |
80L-100D-30% | 2.4034 | −9.2994 | 0.9923 | 3.87 | |
70L-100D-30% | 2.2867 | −11.527 | 0.9904 | 5.04 | |
60L-100D-30% | 2.4958 | −12.298 | 0.9903 | 4.93 | |
100L-100D-35% | 1.8791 | −9.7873 | 0.9965 | 5.21 | |
90L-100D-35% | 1.9185 | −10.431 | 0.9965 | 5.44 | |
80L-100D-35% | 1.9912 | −9.9005 | 0.9973 | 4.97 | |
70L-100D-35% | 1.8336 | −7.885 | 0.9958 | 4.30 | |
60L-100D-35% | 2.0442 | −8.8044 | 0.9954 | 4.31 | |
100L-100D-40% | 1.623 | −9.1792 | 0.9989 | 5.66 | |
90L-100D-40% | 1.6654 | −9.6318 | 0.9985 | 5.78 | |
80L-100D-40% | 1.6563 | −9.7237 | 0.9986 | 5.87 | |
70L-100D-40% | 1.7306 | −10.084 | 0.9969 | 5.83 | |
60L-100D-40% | 1.823 | −10.876 | 0.9963 | 5.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, Y.-H.; Mansouri, I.; Hu, J.-W. Experimental Study on Recentering Behavior of Precompressed Polyurethane Springs. Materials 2022, 15, 3514. https://doi.org/10.3390/ma15103514
Ju Y-H, Mansouri I, Hu J-W. Experimental Study on Recentering Behavior of Precompressed Polyurethane Springs. Materials. 2022; 15(10):3514. https://doi.org/10.3390/ma15103514
Chicago/Turabian StyleJu, Young-Hun, Iman Mansouri, and Jong-Wan Hu. 2022. "Experimental Study on Recentering Behavior of Precompressed Polyurethane Springs" Materials 15, no. 10: 3514. https://doi.org/10.3390/ma15103514
APA StyleJu, Y. -H., Mansouri, I., & Hu, J. -W. (2022). Experimental Study on Recentering Behavior of Precompressed Polyurethane Springs. Materials, 15(10), 3514. https://doi.org/10.3390/ma15103514