100th Anniversary of Brillouin Scattering: Impact on Materials Science
Abstract
:1. Introduction
2. Brief History and Overview of Brillouin Scattering Spectroscopy
3. Brillouin Scattering Spectroscopy in Materials Science
3.1. Ferroelectric Materials
3.1.1. Elastic Anomaly
3.1.2. Critical Slowing Down
3.2. Relaxor Ferroelectrics
3.2.1. Characteristic Temperatures of Relaxor Ferroelectrics
3.2.2. Electric Field Effects on Relaxor Ferroelectrics
3.3. Liquid, Glass, and Crystalline States
3.3.1. Liquid–Glass Transition
3.3.2. Drug Materials
3.4. Polymorphism, Dehydration, and Denaturation of Proteins
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Curie, J.; Curie, P. Développement par compression de l’électricité polaire dans les cristaux hémièdres à faces inclinées. Bull. Minéral. 1880, 3–4, 90–93. [Google Scholar] [CrossRef]
- Brillouin, L. Diffusion de la lumière et des rayons X par un corps transparent homogène. Ann. Phys. 1922, 17, 88–122. [Google Scholar] [CrossRef]
- Bose, S.N. Plancks Gesetz und Lichtquantenhypothese. Z. Für Phys. 1924, 26, 178–181. (In German) [Google Scholar] [CrossRef]
- McSkimin, H.J. Pulse superposition method for measuring ultrasonic wave velocities in solids. J. Acoust. Soc. Am. 1961, 33, 12–16. [Google Scholar] [CrossRef]
- Ohno, I. Free vibration of a rectangular parallelpiped crystal and its application to determination of elastic constants of orthorhombic crystals. J. Phys. Earth 1976, 24, 355–379. [Google Scholar] [CrossRef]
- Yasunaga, M.; Funatsu, Y.; Kojima, S.; Otsuka, K.; Suzuki, T. Measurement of elastic constants. Scr. Metall. 1983, 17, 1091–1094. [Google Scholar] [CrossRef]
- Gross, E. Change of wave-length of light due to elastic heat waves at scattering in liquids. Nature 1930, 126, 201–202. [Google Scholar] [CrossRef]
- Fabry, C.; Pérot, A. Théorie et applications d’une nouvelle méthode de spectroscopie interférentielle. Ann. Chim. Phys. 1899, 16, 115–144. (In French) [Google Scholar]
- Perot, A.; Fabry, C. On the application of interference phenomena to the solution of various problems of spectroscopy and metrology. Astrophys. J. 1899, 9, 87–115. [Google Scholar] [CrossRef]
- Debye, P. Zur Theorie der spezifischen Warme. Ann. Physik 1912, 39, 789–839. (In German) [Google Scholar] [CrossRef] [Green Version]
- Nagaoka, H.; Mishima, T. A combination of a concave grating with a Lummer-Gehrcke plate or an echelon grating for examining fine structure of spectral lines. Astrophys. J. 1923, 57, 92–97. [Google Scholar] [CrossRef]
- Mandelstam, L.I. Light scattering by inhomogeneous media. Zh. Russ. Fiz. Khim. Ova. 1926, 58, 381–391. (In Russia) [Google Scholar]
- Hayes, W.; Loudon, R. Scattering of Light by Crystals; Dover Publishing, Inc.: Minesota, NY, USA, 1978. [Google Scholar]
- Benedek, G.B.; Fritsch, K. Brillouin scattering in cubic crystals. Phys. Rev. 1966, 149, 647–662. [Google Scholar] [CrossRef]
- Vacher, R.; Boyer, L. Brillouin scattering: A tool for the measurement of elastic and photoelastic constants. Phys. Rev. B 1972, 6, 639–673. [Google Scholar] [CrossRef]
- Itoh, S.; Yamana, Y.; Kojima, S. Quick measurement of brillouin spectra of glass-forming material trimethylene glycol by angular dispersion-type Fabry-Perot interferometer system. Jpn. J. Appl. Phys. 1996, 35, 2879–2881. [Google Scholar] [CrossRef]
- Ko, J.-H.; Kojima, S. Nonscanning Brillouin spectroscopy applied to solid materials. Rev. Sci. Instrum. 2002, 73, 4390–4392. [Google Scholar] [CrossRef]
- Ike, Y.; Tsukada, S.; Kojima, S. High-resolution Brillouin spectroscopy with angular dispersion-type Fabry-Perot interferometer and its application to a quartz crystal. Rev. Sci. Instrum. 2007, 78, 076104. [Google Scholar] [CrossRef] [Green Version]
- Itoh, S.; Nakamura, T. Brillouin scattering study of Gd2(MoO4)3 using a double Fabry-Perot-Interferometer. Ferroelectrics 1974, 8, 589–590. [Google Scholar] [CrossRef]
- Sawada, A.; Udagawa, M.; Nakamura, T. Proper ferroelastic transition in piezoelectric lithium ammonium tartrate. Phys. Rev. Lett. 1977, 39, 829–832. [Google Scholar] [CrossRef]
- Mock, R.; Hillebrands, B.; Sandercock, R. Construction and performance of a Brillouin scattering set-up using a triple-pass tandem Fabry-Perot interferometer. J. Phys. E Sci. Instrum. 1987, 20, 656–659. [Google Scholar] [CrossRef]
- Kojima, S.; Muhtar, A.; Sivasburmanian, V.; Vokov, A.A.; Ye, J.C. Precursor dynamics of Pb(B1/2B’1/2)O3-type relaxor ferroelectrics studied by micro-Brillouin scattering. J. Adv. Dielec. 2012, 2, 1241004. [Google Scholar] [CrossRef]
- Sharma, L.P.; Gowd, T.N. Raman and Brillouin scattering studies on liquids and crystals using an ultra high resolution spectrometer. Ind. J. Pure Appl. Sci. 2000, 38, 335–343. [Google Scholar]
- Shirasaki, M. Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer. Opt. Lett. 1996, 21, 366–368. [Google Scholar] [CrossRef] [PubMed]
- Scarcelli, G.; Polacheck, W.J.; Nia, H.T.; Patel, K.; Grodzinsky, A.J.; Kamm, R.D.; Yun, S.H. Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy. Nat. Meth. 2015, 12, 1132–1136. [Google Scholar] [CrossRef] [Green Version]
- Vincent, B.; Kruger, J.K.; Elmazria, O.; Bouvot, L.; Mainka, J.; Sanctuary, R.; Rouxel, D.; Alnot, P. Imaging of microwave-induced acoustic fields in LiNbO3 by high-performance Brillouin microscopy. J. Phys. D Appl. Phys. 2005, 38, 2026–2030. [Google Scholar] [CrossRef]
- Lemons, R.A.; Quate, C.F. Acoustic microscope—Scanning version. Appl. Phys. Lett. 1974, 24, 163–165. [Google Scholar] [CrossRef]
- Kojima, S. Reflection acoustic microscopy to crystalline materials. Int. J. Eng. Sci. 1991, 29, 309–314. [Google Scholar] [CrossRef]
- Foster, J. High resolution acoustic microscopy in superfluid helium. Phys. B C 1984, 126, 199–205. [Google Scholar] [CrossRef]
- Chiao, R.Y.; Townes, C.H.; Stoicheff, B.P. Stimulated Brillouin scattering and coherent generation of intense hypersonic waves. Phys. Rev. Lett. 1964, 12, 592–594. [Google Scholar] [CrossRef]
- Damzen, M.J.; Vlad, V.I.; Babin, V.; Mocofanescu, A. Stimulated Brillouin Scattering; Institute of Physics Publishing: London, UK, 2003. [Google Scholar]
- Mizuno, Y.; Nakamura, K. Brillouin scattering in polymer optical fibers: Fundamental properties and potential use in sensors. Polymers 2011, 3, 886. [Google Scholar] [CrossRef]
- Gusev, V.E.; Ruello, P. Advances in applications of time-domain Brillouin scattering for nanoscale imaging. Appl. Phys. Rev. 2018, 5, 031101. [Google Scholar] [CrossRef] [Green Version]
- Still, T. Frequency Acoustics in Colloid-Based Meso-and Nanostructures by Spontaneous Brillouin Light Scattering; Springer: Berlin/Heiderberg, Germany, 2010. [Google Scholar]
- Carlotti, G. Elastic characterization of transparent and opaque films, multilayers and acoustic resonators by surface brillouin scattering: A review. Appl. Sci. 2018, 8, 124. [Google Scholar] [CrossRef] [Green Version]
- Ko, J.-H.; Kim, D.H.; Kojima, S.; Kim, J.-H.; Choo, W.K. Brillouin scattering study on polycrystalline relaxor ferroelectrics. Jpn. J. Appl. Phys. 2003, 42, 3076–3079. [Google Scholar] [CrossRef]
- Kang, D.H.; Oh, S.H.; Ko, J.-H.; Lee, K.-S.; Kojima, S. Elastic properties of taurine single crystals studied by Brillouin spectroscopy. Int. J. Mol. Sci. 2021, 22, 7116. [Google Scholar] [CrossRef]
- Mathieu, V.; Fukui, K.; Matsukawa, M.; Kawabe, M.; Vayron, R.; Soffer, E.; Anagnostou, F.; Haiat, G. Measurements in mature and newly formed bone tissue surrounding an implant. J. Biomech. Eng. 2011, 133, 021006. [Google Scholar] [CrossRef]
- Randall, J.T.; Vaughan, J.M. The measurement and interpretation of Brillouin scattering in the lens of the eye. Proc. R. Soc. Lond. B 1982, 214, 449–470. [Google Scholar]
- Yoshihara, A.; Miyazaki, A.; Maeda, T.; Imai, Y.; Itoh, T. Spectroscopic characterization of dragonfly wings common in Japan. Vib. Spec. 2012, 61, 85–93. [Google Scholar] [CrossRef]
- Oh, K.H.; Ko, Y.-H.; Kojima, S.; Ko, J.-H. High-pressure elasticity of Baltic amber studied by Brillouin spectroscopy. J. Korean Phys. Soc. 2020, 77, 773–779. [Google Scholar] [CrossRef]
- Camley, R.E.; Grünberg, P.; Mayr, C.M. Magnon: Stokes—Anti-stokes asymmetry in Brillouin scattering from magnons in thin ferromagnetic films. Phys. Rev. B 1982, 26, 2609–2614. [Google Scholar] [CrossRef]
- Kargar, F.; Alexander, A.; Balandin, A.A. Advances in Brillouin–Mandelstam light-scattering spectroscopy. Nat. Photonics 2021, 15, 720–731. [Google Scholar] [CrossRef]
- Courtens, E.; Pelous, J.; Phalippou, J.; Vacher, R.; Woignier, T. Brillouin-scattering measurements of phonon-fracton crossover in silica aerogels. Phys. Rev. Lett. 1987, 58, 128. [Google Scholar] [CrossRef] [PubMed]
- Greytak, T.J.; Yan, J. Light scattering from rotons in liquid helium. Phys. Rev. Lett. 1969, 22, 987–990. [Google Scholar] [CrossRef]
- Loudon, R. Theory of surface-ripple Brillouin scattering by solids. Phys. Rev. Lett. 1978, 40, 581–583. [Google Scholar] [CrossRef]
- Kojima, S. Gigahertz acoustic spectroscopy by Micro-Brillouin scattering. Jpn. J. Appl. Phys. 2010, 49, 07HA01. [Google Scholar] [CrossRef]
- Aramomi, S.; Matsuda, Y.; Kojima, S. High temperature Brillouin scattering study on elastic properties of lithium cesium borate glasses, crystals and melts. J. Non Cryst. Solids 2014, 401, 142–146. [Google Scholar] [CrossRef] [Green Version]
- Jiang, F.M.; Kojima, S. Microheterogeneity and relaxation in 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 relaxor single crystals. Appl. Phys. Lett. 2000, 77, 1271–1273. [Google Scholar] [CrossRef]
- Shabbir, G.; Ko, J.-H.; Kojima, S. Observation of low-temperature acoustic anomaly in lanthanum lead zirconate titanate. Appl. Phys. Lett. 2005, 86, 012908. [Google Scholar] [CrossRef] [Green Version]
- Kojima, S.; Nakamura, T.; Asaumi, K.; Takashige, M.; Minomura, S. Raman scattering studies on phase transition in barium sodium niobate at high-pressure. Solid State Commun. 1979, 29, 779–783. [Google Scholar] [CrossRef]
- Tkachev, S.N.; Ahart, M.; Novikov, V.N.; Kojima, S. Pressure dependence of Poisson’s ratio of glassy Baltic amber studied by Brillouin scattering spectroscopy. Jpn. J. Appl. Phys. 2021, 60, SDDA04. [Google Scholar] [CrossRef]
- Polian, A.; Vo-Thanh, D.; Richet, P. Elastic properties of a-SiO2 up to 2300 K from Brillouin scattering measurements. Europhys. Lett. 2002, 57, 375–381. [Google Scholar] [CrossRef]
- Shi, W.; Sun, N.; Li, X.; Mao, Z.; Liu, J.; Prakapenka, V.B. Single-crystal elasticity of high-pressure ice up to 98 GP by Brillouin scattering. Geophys. Res. Lett. 2021, 48, e92514. [Google Scholar] [CrossRef]
- Valasek, J. Piezoelectric and allied phenomena in Rochelle salt. Phys. Rev. 1920, 15, 537–538. [Google Scholar]
- Kojima, S. Broadband terahertz spectroscopy of phonon-polariton dispersion in ferroelectrics. Photonics 2018, 5, 55. [Google Scholar] [CrossRef] [Green Version]
- Nanamatsu, S.; Kimura, M.; Doi, K.; Takahashi, M. Ferroelectric properties of Sr2Nb2O7 single crystal. J. Phys. Soc. Jpn. 1971, 30, 300–301. [Google Scholar] [CrossRef]
- Kojima, S. Super-high curie temperature ferroelectrics and superior TC tunability: Lattice instability and ferroelectric phase transitions. Ferroelectrics 2020, 569, 122–135. [Google Scholar] [CrossRef]
- Christy, Y.; Matsumoto, K.; Kojima, S. Elastic anomaly and aging of new type of incommensurate phase transition in ferroelectric barium sodium niobate. Jpn. J. Appl. Phys. 2015, 54, 214112. [Google Scholar] [CrossRef]
- Jiang, F.; Ko, J.-H.; Kojima, S. Central peaks and Brillouin scattering in uniaxial relaxor single crystals of Sr0.61Ba0.39Nb2O6. Phys. Rev. B 2002, 66, 184301. [Google Scholar] [CrossRef]
- Ota, S.; Matsumoto, K.; Suzuki, K.; Kojima, S. Elastic anomaly and order-disorder nature of multiferroic barium sodium niobate studied by broadband Brillouin scattering. IOP Conf. Ser. Mater. Sci. Eng. 2014, 54, 012018. [Google Scholar] [CrossRef] [Green Version]
- Kojima, S.; Ko, J.-H. Broadband micro-Brillouin scattering spectroscopy of Pb(B1/3B’2/3)O3-based relaxor ferroelectrics. Curr. Appl. Phys. 2011, 11, S22–S32. [Google Scholar] [CrossRef]
- Kojima, S.; Aftabuzzaman, M.; Dec, J.; Kleemann, W. Ferroelectric phase transitions of uniaxial Sr1-xBaxNb2O6 and their composition variation. Jpn. J. Appl. Phys. 2019, 58, SLLA02. [Google Scholar] [CrossRef]
- Knauss, L.A.; Wang, X.M.; Toulouse, J. Polarization-strain coupling in the mixed ferroelectric KTa1-xNbxO3. Phys. Rev. B 1995, 52, 13261. [Google Scholar] [CrossRef] [PubMed]
- Hushur, A.; Gvasaliya, S.N.; Roessli, B.; Lushnikov, S.G.; Kojima, S. Ferroelectric phase transition of stoichiometric lithium tantalate studied by Raman, Brillouin, and neutron scattering. Phys. Rev. B 2007, 76, 064104. [Google Scholar] [CrossRef] [Green Version]
- Hushur, A.; Shigematsu, H.; Akishige, Y.; Kojima, S. Order-disorder nature of ferroelectric BaTi2O5. Appl. Phys. Lett. 2005, 86, 112903. [Google Scholar] [CrossRef] [Green Version]
- Cross, L.E. Relaxor ferroelectrics. Ferroelectrics 1987, 76, 241–267. [Google Scholar] [CrossRef]
- Kleemann, W.; Dec, J.; Lehnen, P.; Blinc, R.; Zalar, B.; Pankrath, R. Uniaxial relaxor ferroelectrics: The ferroic random-field Ising model materialized at last. Europhys. Lett. 2002, 57, 14–19. [Google Scholar] [CrossRef]
- Suzuki, K.; Matsumoto, K.; Dec, J.; Łukasiewicz, T.; Kleemann, W.; Kojima, S. Critical slowing down and elastic anomaly of uniaxial ferroelectric Ca0.28Ba0.72Nb2O6 crystals with tungsten bronze structure. Phys. Rev. B 2014, 90, 064110. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, K.; Kojima, S. Effect of electric field on uniaxial relaxor ferroelectric strontium barium niobate. Jpn. J. Appl. Phys. 2015, 54, 10NC04. [Google Scholar] [CrossRef]
- Dul’kin, E.; Kojima, S.; Roth, M. Dielectric maximum temperature non-monotonic behavior in uniaxial Sr0.75Ba0.25Nb2O6 relaxor seen via acoustic emission. J. Appl. Phys. 2011, 110, 044106. [Google Scholar] [CrossRef]
- Tsukada, S.; Kim, T.H.; Kojima, S. Large acoustic thermal hysteresis in relaxor ferroelectric Pb(Zn1/3Nb2/3)O3-PbTiO3. APL Mater. 2013, 1, 032114. [Google Scholar] [CrossRef] [Green Version]
- Aftabuzzaman, M.; Helal, M.A.; Paszkowski, R.; Dec, J.; Kleemann, W.; Kojima, S. Electric field and aging effects of uniaxial ferroelectrics SrxBa1−xNb2O6 probed by Brillouin scattering. Sci. Rep. 2017, 7, 11615. [Google Scholar] [CrossRef] [Green Version]
- Aftabuzzaman, M.; Helal, M.A.; Dec, J.; Kleemann, W.; Kojima, S. Electric field effect on elastic properties of uniaxial relaxor SrxBa1-xNb2O6 single crystals with strong random fields. Jpn. J. Appl. Phys. 2017, 56, 10PC06. [Google Scholar] [CrossRef] [Green Version]
- Polge, C.; Smith, A.; Parkes, A. Revival of spermatozoa after vitrification and dehydration. Nature 1949, 164, 666. [Google Scholar] [CrossRef] [PubMed]
- Bohmer, R.; Ngai, K.L.; Angell, C.A.; Plazek, D.J. Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 1993, 99, 4201–4209. [Google Scholar] [CrossRef]
- Kojima, S. Low-Frequency Raman Investigation of the Liquid-Glass Transition in Glycerol. Phys. Rev. B 1993, 47, 2924–2927. [Google Scholar] [CrossRef] [Green Version]
- Kojima, S.; Takanashi, K.; Yoshihara, A. Broadband light scattering of glycerol. J. Mol. Struct. 1995, 349, 227–230. [Google Scholar] [CrossRef]
- Park, I.S.; Saruta, K.; Kojima, S. Broadband dielectric spectroscopy of glass transition in supercooled alcohols. J. Korean Phys. Soc. 1998, 32, S817–S820. [Google Scholar]
- Kojima, S.; Kashiwada, T.; Nakahira, S. Photoacoustic measurements of thermal dispersion in glass-transitions of glycerol and propylene glycol. High Temp. High Press. 1991, 23, 701–704. [Google Scholar]
- Novikov, V.N.; Sourouvtsev, N.V.; Wierdersich, J.; Adichtchev, S.; Kojima, S.; Rossler, E. On the origin of quasi-elastic light scattering in glasses. Europhys. Lett. 2002, 57, 838–844. [Google Scholar] [CrossRef]
- Li, G.; Du, W.M.; Chen, X.K.; Cummins, H.Z.; Tao, N.J. Testing mode-coupling predictions for α and β relaxation in Ca0.4K0.6 (NO3)1.4 near the liquid-glass transition by light scattering. Phys. Rev. A 1992, 45, 3867–3879. [Google Scholar] [CrossRef]
- Barshilia, H.C.; Li, G.; Shen, G.Q.; Cummins, H.Z. Depolarized light scattering spectroscopy of Ca0.4K0.6(NO3)1.4: A reexamination of the “knee”. Phys. Rev. E 1999, 59, 5625–5628. [Google Scholar] [CrossRef]
- Matsui, G.; Itoh, S.; Kojima, S. Rapid Brillouin Scattering Measurement of Fast Relaxation Process in Glass-Forming Intermediate Liquid. Jpn. J. Appl. Phys. 1998, 37, 2812–2814. [Google Scholar] [CrossRef]
- Ike, Y.; Kojima, S. Brillouin scattering study of polymer dynamics. Mater. Sci. Eng. A 2006, 442, 383–386. [Google Scholar] [CrossRef]
- Takagi, Y.; Yano, Y.; Kojima, S. The liquid-glass transition in n-propanol: The pressure dependence of the Brillouin spectra. J. Phys. Conden. Matter. 1997, 9, 6995–7002. [Google Scholar] [CrossRef]
- Ahart, M.; Jiang, F.; Kojima, S. Brillouin scattering study of pressure induced glass transition in ethanol and methanol. Jpn. J. Appl. Phys. 1998, 36, 2803–2804. [Google Scholar] [CrossRef]
- Ko, J.-H.; Lee, K.-S.; Ike, Y.; Kojima, S. Elastic properties of aspirin in its crystalline and glassy phases studied by micro-Brillouin scattering. Chem. Phys. Lett. 2008, 465, 36–39. [Google Scholar] [CrossRef]
- Ko, J.-H.; Kim, T.H.; Lee, K.-S.; Kojima, S. Acoustic properties of aspirin in its various phases and transformation stages studied by Brillouin scattering. J. Non Cryst. Solids 2011, 357, 541–551. [Google Scholar] [CrossRef]
- Ko, J.-H.; Kim, T.H.; Lee, K.-S.; Kojima, S. Brillouin scattering study on crystalline and glassy states of anti-inflammatory racemic S(+)–R(−) ibuprofen. Chem. Phys. Lett. 2011, 515, 221–225. [Google Scholar] [CrossRef]
- Kim, T.H.; Shibata, T.; Kojima, S.; Shin, D.-M.; Hwang, Y.-H.; Ko, J.-H. Comparison of thermal and elastic properties of glassy racemic and enantiomorphic ibuprofen studied by Brillouin light scattering and modulated differential scanning calorimetry. Curr. Appl. Phys. 2014, 14, 965–969. [Google Scholar] [CrossRef]
- Shibata, T.; Takayama, H.; Kim, T.H.; Kojima, S. Acoustic and thermal anomalies in a liquid–glass transition of racemic S(+)–R(−) ketoprofen. Chem. Phys. Lett. 2014, 592, 80–84. [Google Scholar] [CrossRef] [Green Version]
- Shibata, T.; Kojima, S. Liquid, glass, and crystalline indomethacin studied by Brillouin scattering. Jpn. J. Appl. Phys. 2018, 57, 07LB03. [Google Scholar] [CrossRef] [Green Version]
- Shibata, T.; Mori, T.; Kojima, S. Low-frequency vibrational properties of crystalline and glassy indomethacin probed by terahertz time-domain spectroscopy and low-frequency Raman scattering. Spectrochim. Acta Part A 2015, 150, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Krüger, J.K.; Embs, J.; Brierley, J.; Jiménez, R. A new Brillouin scattering technique for the investigation of acoustic and opto-acoustic properties: Application to polymers. J. Phys. D 1998, 31, 1913–1918. [Google Scholar] [CrossRef]
- Svaniza, A.V.; Lushnikov, S.G.; Kojima, S. Anomalous temperature behavior of hypersonic acoustic phonons in a lisozyme crystal. JETP Lett. 2006, 84, 551–555. [Google Scholar]
- Ike, Y.; Hashimoto, E.; Aoki, Y.; Kanazawa, H.; Kojima, S. Micro-Brillouin scattering study of low temperature elastic properties of protein crystals. J. Mol. Struct. 2009, 924–926, 157–160. [Google Scholar] [CrossRef]
- Adachi, H.; Watanabe, T.; Yoshimura, M.; Mori, Y.; Sasaki, T. Promotion of large protein crystal growth with stirring solution. Jpn. J. Appl. Phys. 2002, 41, L1026–L1027. [Google Scholar] [CrossRef]
- Hahsimoto, E.; Aoki, Y.; Seshimo, Y.; Sasanuma, K.; Ike, Y.; Kojima, S. Dehydration process of protein crystals by micro-Brillouin scattering. Jpn. J. Appl. Phys. 2008, 47, 3839–3842. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.-B.; Zhang, X.-C. Dehydration kinetics of D-glucose monohydrate studied using THz time-domain spectroscopy. Chem. Phys. Lett. 2006, 429, 229–233. [Google Scholar] [CrossRef]
- Svanidze, A.V.; Lushnikov, S.G.; Romanov, V.P.; Kojima, S. Multicomponent Rayleigh scattering from guanidine hydrochloride solutions. J. Raman Spec. 2012, 43, 1510–1514. [Google Scholar] [CrossRef]
Year | Event | Ref. |
---|---|---|
1899 | A. Perot and C. Fabry developed the Fabry-Perot interferometer. | [8,9] |
1912 | P. Debye discussed acoustic oscillations in a box. | [10] |
1922 | L. Brillouin predicted inelastic light scattering by thermally excited acoustic waves. | [2] |
1923 | H. Nagaoka and T. Mishima developed the method to measure high resolution spectra using an echelon grating. | [11] |
1926 | L. Mandelstam independently predicted light scattering from thermally excited acoustic waves. | [12] |
1930 | E. Gross observed the inelastic light scattering from acoustic oscillations of liquids. | [7] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kojima, S. 100th Anniversary of Brillouin Scattering: Impact on Materials Science. Materials 2022, 15, 3518. https://doi.org/10.3390/ma15103518
Kojima S. 100th Anniversary of Brillouin Scattering: Impact on Materials Science. Materials. 2022; 15(10):3518. https://doi.org/10.3390/ma15103518
Chicago/Turabian StyleKojima, Seiji. 2022. "100th Anniversary of Brillouin Scattering: Impact on Materials Science" Materials 15, no. 10: 3518. https://doi.org/10.3390/ma15103518
APA StyleKojima, S. (2022). 100th Anniversary of Brillouin Scattering: Impact on Materials Science. Materials, 15(10), 3518. https://doi.org/10.3390/ma15103518